Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38645169

RESUMO

Breast cancer is the second most common cancer globally. Most deaths from breast cancer are due to metastatic disease which often follows long periods of clinical dormancy1. Understanding the mechanisms that disrupt the quiescence of dormant disseminated cancer cells (DCC) is crucial for addressing metastatic progression. Infection with respiratory viruses (e.g. influenza or SARS-CoV-2) is common and triggers an inflammatory response locally and systemically2,3. Here we show that influenza virus infection leads to loss of the pro-dormancy mesenchymal phenotype in breast DCC in the lung, causing DCC proliferation within days of infection, and a greater than 100-fold expansion of carcinoma cells into metastatic lesions within two weeks. Such DCC phenotypic change and expansion is interleukin-6 (IL-6)-dependent. We further show that CD4 T cells are required for the maintenance of pulmonary metastatic burden post-influenza virus infection, in part through attenuation of CD8 cell responses in the lungs. Single-cell RNA-seq analyses reveal DCC-dependent impairment of T-cell activation in the lungs of infected mice. SARS-CoV-2 infected mice also showed increased breast DCC expansion in lungs post-infection. Expanding our findings to human observational data, we observed that cancer survivors contracting a SARS-CoV-2 infection have substantially increased risks of lung metastatic progression and cancer-related death compared to cancer survivors who did not. These discoveries underscore the significant impact of respiratory viral infections on the resurgence of metastatic cancer, offering novel insights into the interconnection between infectious diseases and cancer metastasis.

2.
Cell Host Microbe ; 32(3): 411-424.e10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38307020

RESUMO

Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice. Reactive oxygen species generated by phagocytes oxidize methionine, generating methionine sulfoxide. Anaerobic Salmonella uses the molybdenum cofactor-containing DmsABC enzymatic complex to reduce methionine sulfoxide. The enzymatic activity of the methionine sulfoxide reductase DmsABC helps Salmonella maintain an alkaline cytoplasm that supports the synthesis of the antioxidant hydrogen sulfide via cysteine desulfuration while providing a source of methionine and fostering redox balancing by associated dehydrogenases. Our investigations demonstrate that nontyphoidal Salmonella responding to oxidative stress exploits the anaerobic metabolism associated with dmsABC gene products, a pathway that has accrued inactivating mutations in human-adapted typhoidal serovars.


Assuntos
Metionina/análogos & derivados , NADPH Oxidases , Fagócitos , Animais , Camundongos , Humanos , Anaerobiose , Fagócitos/metabolismo , Metionina/metabolismo , Salmonella typhimurium/metabolismo , Respiração
3.
J Biol Chem ; 298(7): 102130, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714768

RESUMO

The type III secretion system encoded in the Salmonella pathogenicity island-2 (SPI-2) gene cluster facilitates intracellular growth of nontyphoidal Salmonella by interfering with the maturation of Salmonella-containing vacuoles along the degradative pathway. SPI-2 gene products also protect Salmonella against the antimicrobial activity of reactive oxygen species (ROS) synthesized by the phagocyte NADPH oxidase 2 (NOX2). However, a potential relationship between inflammatory ROS and the activation of transcription of SPI-2 genes by intracellular Salmonella is unclear. Here, we show that ROS engendered in the innate host response stimulate SPI-2 gene transcription. We found that the expression of SPI-2 genes in Salmonella-sustaining oxidative stress conditions involves DksA, a protein otherwise known to regulate the stringent response of bacteria to nutritional stress. We also demonstrate that the J and zinc-2-oxidoreductase domains of DnaJ as well as the ATPase activity of the DnaK chaperone facilitate loading of DksA onto RNA polymerase complexed with SPI-2 promoters. Furthermore, the DksA-driven transcription of SPI-2 genes in Salmonella experiencing oxidative stress is contingent on upstream OmpR, PhoP, and SsrB signaling events that participate in the removal of nucleoid proteins while simultaneously recruiting RNA polymerase to SPI-2 promoter regions. Taken together, our results suggest the activation of SPI-2 gene transcription in Salmonella subjected to ROS produced by the respiratory burst of macrophages protects this intracellular pathogen against NOX2-mediated killing. We propose that Salmonella have co-opted inflammatory ROS to induce SPI-2-mediated protective responses against NOX2 host defenses.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana , Estresse Oxidativo , Salmonella , Ativação Transcricional , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/genética , Espécies Reativas de Oxigênio/metabolismo , Salmonella/genética , Salmonella/metabolismo , Ativação Transcricional/fisiologia
4.
J Virol ; 96(9): e0006422, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35416719

RESUMO

Alphaviruses infect cells by a low pH-dependent fusion reaction between viral and host cell membranes that is mediated by the viral E1 glycoprotein. Most reported alphavirus E1 sequences include two phenylalanines (F87 and F95) in the fusion loop, yet the role of these residues in viral infectivity remains to be defined. Following introduction of wild type (WT), E1-F87A, and E1-F95A chikungunya virus (CHIKV) RNA genomes into cells, viral particle production was similar in magnitude. However, CHIKV E1-F87A and E1-F95A virions displayed impaired infectivity compared with WT CHIKV particles. Although WT, E1-F87A, and E1-F95A particles bound cells with similar efficiencies, E1-F87A and E1-F95A particles were unable to undergo fusion and entry into cells. Introduction of an F95A mutation in the E1 fusion loop of Mayaro virus or Venezuelan equine encephalitis virus also resulted in poorly infectious virions. We further tested whether an E1-F87A or E1-F95A mutation could be incorporated into a live-attenuated vaccine strain, CHIKV 181/25, to enhance vaccine safety. Infection of immunocompromised Ifnar1-/- and Irf3-/-Irf5-/-Irf7-/- mice with 181/25E1-F87A or 181/25E1-F95A resulted in 0% mortality, compared with 100% mortality following 181/25 infection. Despite this enhanced attenuation, surviving Ifnar1-/- and Irf3-/-Irf5-/-Irf7-/- mice were protected against virulent virus re-challenge. Moreover, single-dose immunization of WT mice with either 181/25, 181/25E1-F87A, or 181/25E1-F95A elicited CHIKV-specific antibody responses and protected against pathogenic CHIKV challenge. These studies define a critical function for residues E1-F87 and E1-F95 in alphavirus fusion and entry into target cells and suggest that incorporation of these mutations could enhance the safety of live-attenuated alphavirus vaccine candidates. IMPORTANCE Alphaviruses are human pathogens that cause both debilitating acute and chronic musculoskeletal disease and potentially fatal encephalitis. In this study, we determined that two highly conserved phenylalanine residues in the alphavirus E1 glycoprotein are required for fusion of viral and host cell membranes and viral entry into target cells. We further demonstrated that mutation of these phenylalanines results in a substantial loss of viral virulence but not immunogenicity. These data enhance an understanding of the viral determinants of alphavirus entry into host cells and could contribute to the development of new antivirals targeting these conserved phenylalanines or new live-attenuated alphavirus vaccines.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Proteínas do Envelope Viral , Vacinas Virais , Animais , Anticorpos Antivirais , Febre de Chikungunya/virologia , Vírus Chikungunya/patogenicidade , Vírus Chikungunya/fisiologia , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Knockout , Fenilalanina/química , Domínios Proteicos , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/química , Vacinas Virais/imunologia , Replicação Viral
5.
J Clin Invest ; 130(3): 1466-1478, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31794434

RESUMO

Chikungunya virus (CHIKV) is an arbovirus capable of causing a severe and often debilitating rheumatic syndrome in humans. CHIKV replicates in a wide variety of cell types in mammals, which has made attributing pathologic outcomes to replication at specific sites difficult. To assess the contribution of CHIKV replication in skeletal muscle cells to pathogenesis, we engineered a CHIKV strain exhibiting restricted replication in these cells via incorporation of target sequences for skeletal muscle cell-specific miR-206. This virus, which we term SKE, displayed diminished replication in skeletal muscle cells in a mouse model of CHIKV disease. Mice infected with SKE developed less severe disease signs, including diminished swelling in the inoculated foot and less necrosis and inflammation in the interosseous muscles. SKE infection was associated with diminished infiltration of T cells into the interosseous muscle as well as decreased production of Il1b, Il6, Ip10, and Tnfa transcripts. Importantly, blockade of the IL-6 receptor led to diminished swelling of a control CHIKV strain capable of replication in skeletal muscle, reducing swelling to levels observed in mice infected with SKE. These data implicate replication in skeletal muscle cells and release of IL-6 as important mediators of CHIKV disease.


Assuntos
Febre de Chikungunya , Vírus Chikungunya/fisiologia , Citocinas/metabolismo , Músculo Esquelético , Replicação Viral/fisiologia , Animais , Linhagem Celular Tumoral , Febre de Chikungunya/metabolismo , Febre de Chikungunya/patologia , Cricetinae , Humanos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/virologia
6.
Elife ; 82019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31596239

RESUMO

The magnitude and duration of vertebrate viremia is a critical determinant of arbovirus transmission, geographic spread, and disease severity. We find that multiple alphaviruses, including chikungunya (CHIKV), Ross River (RRV), and o'nyong 'nyong (ONNV) viruses, are cleared from the circulation of mice by liver Kupffer cells, impeding viral dissemination. Clearance from the circulation was independent of natural antibodies or complement factor C3, and instead relied on scavenger receptor SR-A6 (MARCO). Remarkably, lysine to arginine substitutions at distinct residues within the E2 glycoproteins of CHIKV and ONNV (E2 K200R) as well as RRV (E2 K251R) allowed for escape from clearance and enhanced viremia and dissemination. Mutational analysis revealed that viral clearance from the circulation is strictly dependent on the presence of lysine at these positions. These findings reveal a previously unrecognized innate immune pathway that controls alphavirus viremia and dissemination in vertebrate hosts, ultimately influencing disease severity and likely transmission efficiency.


Assuntos
Infecções por Alphavirus/imunologia , Vírus Chikungunya/imunologia , Células de Kupffer/imunologia , Vírus O'nyong-nyong/imunologia , Receptores Imunológicos/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Animais , Modelos Animais de Doenças , Lisina/genética , Lisina/metabolismo , Camundongos , Mutação de Sentido Incorreto
7.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578287

RESUMO

CD137, a member of the tumor necrosis factor receptor superfamily of cell surface proteins, acts as a costimulatory receptor on T cells, natural killer cells, B cell subsets, and some dendritic cells. Agonistic anti-CD137 monoclonal antibody (MAb) therapy has been combined with other chemotherapeutic agents in human cancer trials. Based on its ability to promote tumor clearance, we hypothesized that anti-CD137 MAb might activate immune responses and resolve chronic viral infections. We evaluated anti-CD137 MAb therapy in a mouse infection model of chikungunya virus (CHIKV), an alphavirus that causes chronic polyarthritis in humans and is associated with reservoirs of CHIKV RNA that are not cleared efficiently by adaptive immune responses. Analysis of viral tropism revealed that CHIKV RNA was present preferentially in splenic B cells and follicular dendritic cells during the persistent phase of infection, and animals lacking B cells did not develop persistent CHIKV infection in lymphoid tissue. Anti-CD137 MAb treatment resulted in T cell-dependent clearance of CHIKV RNA in lymphoid tissue, although this effect was not observed in musculoskeletal tissue. The clearance of CHIKV RNA from lymphoid tissue by anti-CD137 MAb was associated with reductions in the numbers of germinal center B cells and follicular dendritic cells. Similar results were observed with anti-CD137 MAb treatment of mice infected with Mayaro virus, a related arthritogenic alphavirus. Thus, anti-CD137 MAb treatment promotes resolution of chronic alphavirus infection in lymphoid tissues by reducing the numbers of target cells for infection and persistence.IMPORTANCE Although CHIKV causes persistent infection in lymphoid and musculoskeletal tissues in multiple animals, the basis for this is poorly understood, which has hampered pharmacological efforts to promote viral clearance. Here, we evaluated the therapeutic effects on persistent CHIKV infection of an agonistic anti-CD137 MAb that can activate T cell and natural killer cell responses to clear tumors. We show that treatment with anti-CD137 MAb promotes the clearance of persistent alphavirus RNA from lymphoid but not musculoskeletal tissues. This occurs because anti-CD137 MAb-triggered T cells reduce the numbers of target germinal center B cells and follicular dendritic cells, which are the primary reservoirs for CHIKV in the spleen and lymph nodes. Our studies help to elucidate the basis for CHIKV persistence and begin to provide strategies that can clear long-term cellular reservoirs of infection.


Assuntos
Anticorpos Monoclonais/farmacologia , Febre de Chikungunya/imunologia , Vírus Chikungunya/efeitos dos fármacos , Tecido Linfoide/virologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Imunidade Adaptativa , Animais , Anticorpos Monoclonais/imunologia , Linfócitos B/imunologia , Febre de Chikungunya/virologia , Modelos Animais de Doenças , Humanos , Células Matadoras Naturais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Viral , Baço/virologia , Linfócitos T/imunologia , Tropismo Viral
8.
PLoS Negl Trop Dis ; 12(10): e0006921, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30372439

RESUMO

Leishmania species are sand fly-transmitted protozoan parasites that cause leishmaniasis, neglected tropical diseases that affect millions of people. Leishmania amastigotes must overcome a variety of host defenses, including reactive oxygen species (ROS) produced by the NADPH oxidase. Leishmania species encode three superoxide dismutases (SODs): the mitochondrial SODA and two glycosomal SODs (SODB1 and SODB2). SODs are metalloenzymes that function in antioxidant defense by converting superoxide to oxygen and hydrogen peroxide. Here, we investigated a role for SODB1 in Leishmania infection of macrophages and virulence in mice. We found that a single allele deletion of SODB1 (SODB1/Δsodb1) had minimal effects on the replication of axenically-grown L. major promastigotes or differentiation to infective metacyclic promastigotes. Disruption of a single SODB1 allele also did not affect L. donovani differentiation to amastigotes induced axenically, or the replication of axenically-grown L. donovani promastigotes and amastigotes. In contrast, the persistence of SODB1/Δsodb1 L. major in WT macrophages was impaired, and the development of cutaneous lesions in SODB1/Δsodb1 L. major-infected C57BL/6 and BALB/c mice was strongly reduced. The reduced disease severity in mice was associated with reduced burdens of SODB1/Δsodb1 L. major parasites in the foot at late, but not early times post-inoculation, as well as an impaired capacity to disseminate from the site of inoculation. Collectively, these data suggest that SODB1 is critical for L. major persistence in macrophages and virulence in mice.


Assuntos
Leishmania major/enzimologia , Leishmania major/patogenicidade , Leishmaniose Cutânea/patologia , Macrófagos/imunologia , Macrófagos/parasitologia , Superóxido Dismutase/metabolismo , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Deleção de Genes , Leishmania donovani/enzimologia , Leishmania donovani/genética , Leishmania donovani/patogenicidade , Leishmania major/genética , Leishmaniose Cutânea/parasitologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Carga Parasitária , Superóxido Dismutase/genética , Virulência , Fatores de Virulência/genética
9.
Diabetes ; 67(8): 1561-1575, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29764859

RESUMO

Patients with both major forms of diabetes would benefit from therapies that increase ß-cell mass. Glucose, a natural mitogen, drives adaptive expansion of ß-cell mass by promoting ß-cell proliferation. We previously demonstrated that a carbohydrate response element-binding protein (ChREBPα) is required for glucose-stimulated ß-cell proliferation and that overexpression of ChREBPα amplifies the proliferative effect of glucose. Here we found that ChREBPα reprogrammed anabolic metabolism to promote proliferation. ChREBPα increased mitochondrial biogenesis, oxygen consumption rates, and ATP production. Proliferation augmentation by ChREBPα required the presence of ChREBPß. ChREBPα increased the expression and activity of Nrf2, initiating antioxidant and mitochondrial biogenic programs. The induction of Nrf2 was required for ChREBPα-mediated mitochondrial biogenesis and for glucose-stimulated and ChREBPα-augmented ß-cell proliferation. Overexpression of Nrf2 was sufficient to drive human ß-cell proliferation in vitro; this confirms the importance of this pathway. Our results reveal a novel pathway necessary for ß-cell proliferation that may be exploited for therapeutic ß-cell regeneration.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Cadáver , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dinâmica Mitocondrial , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Biogênese de Organelas , Consumo de Oxigênio , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Técnicas de Cultura de Tecidos , Fatores de Transcrição/química , Fatores de Transcrição/genética
10.
PLoS Pathog ; 13(12): e1006748, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29244871

RESUMO

Chikungunya virus (CHIKV) and Ross River virus (RRV) are mosquito-transmitted alphaviruses that cause debilitating acute and chronic musculoskeletal disease. Monocytes are implicated in the pathogenesis of these infections; however, their specific roles are not well defined. To investigate the role of inflammatory Ly6ChiCCR2+ monocytes in alphavirus pathogenesis, we used CCR2-DTR transgenic mice, enabling depletion of these cells by administration of diptheria toxin (DT). DT-treated CCR2-DTR mice displayed more severe disease following CHIKV and RRV infection and had fewer Ly6Chi monocytes and NK cells in circulation and muscle tissue compared with DT-treated WT mice. Furthermore, depletion of CCR2+ or Gr1+ cells, but not NK cells or neutrophils alone, restored virulence and increased viral loads in mice infected with an RRV strain encoding attenuating mutations in nsP1 to levels detected in monocyte-depleted mice infected with fully virulent RRV. Disease severity and viral loads also were increased in DT-treated CCR2-DTR+;Rag1-/- mice infected with the nsP1 mutant virus, confirming that these effects are independent of adaptive immunity. Monocytes and macrophages sorted from muscle tissue of RRV-infected mice were viral RNA positive and had elevated expression of Irf7, and co-culture of Ly6Chi monocytes with RRV-infected cells resulted in induction of type I IFN gene expression in monocytes that was Irf3;Irf7 and Mavs-dependent. Consistent with these data, viral loads of the attenuated nsP1 mutant virus were equivalent to those of WT RRV in Mavs-/- mice. Finally, reconstitution of Irf3-/-;Irf7-/- mice with CCR2-DTR bone marrow rescued mice from severe infection, and this effect was reversed by depletion of CCR2+ cells, indicating that CCR2+ hematopoietic cells are capable of inducing an antiviral response. Collectively, these data suggest that MAVS-dependent production of type I IFN by monocytes is critical for control of acute alphavirus infection and that determinants in nsP1, the viral RNA capping protein, counteract this response.


Assuntos
Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Monócitos/imunologia , Monócitos/virologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Antígenos Ly/metabolismo , Vírus Chikungunya/imunologia , Vírus Chikungunya/patogenicidade , Toxina Diftérica/farmacologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/imunologia , Humanos , Inflamação/virologia , Fator Regulador 3 de Interferon/deficiência , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 7 de Interferon/deficiência , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/efeitos dos fármacos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Ross River virus/genética , Ross River virus/imunologia , Ross River virus/patogenicidade , Carga Viral , Virulência/genética , Virulência/imunologia
11.
Sci Transl Med ; 9(408)2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931657

RESUMO

Intercellular transfer of microRNAs can mediate communication between critical effector cells. We hypothesized that transfer of neutrophil-derived microRNAs to pulmonary epithelial cells could alter mucosal gene expression during acute lung injury. Pulmonary-epithelial microRNA profiling during coculture of alveolar epithelial cells with polymorphonuclear neutrophils (PMNs) revealed a selective increase in lung epithelial cell expression of microRNA-223 (miR-223). Analysis of PMN-derived supernatants showed activation-dependent release of miR-223 and subsequent transfer to alveolar epithelial cells during coculture in vitro or after ventilator-induced acute lung injury in mice. Genetic studies indicated that miR-223 deficiency was associated with severe lung inflammation, whereas pulmonary overexpression of miR-223 in mice resulted in protection during acute lung injury induced by mechanical ventilation or by infection with Staphylococcus aureus Studies of putative miR-223 gene targets implicated repression of poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) in the miR-223-dependent attenuation of lung inflammation. Together, these findings suggest that intercellular transfer of miR-223 from neutrophils to pulmonary epithelial cells may dampen acute lung injury through repression of PARP-1.


Assuntos
Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Células Epiteliais/metabolismo , Pulmão/patologia , MicroRNAs/metabolismo , Neutrófilos/metabolismo , Animais , Comunicação Celular , Técnicas de Silenciamento de Genes , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Nanopartículas/química , Pneumonia/genética , Pneumonia/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Transporte de RNA
12.
J Clin Invest ; 126(10): 3942-3960, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27617858

RESUMO

Protective T cell memory is an acquired trait that is contingent upon the preservation of its constituents and therefore vulnerable to the potentially deleterious effects of organismal aging. Here, however, we have found that long-term T cell memory in a natural murine host-pathogen system can substantially improve over time. Comprehensive molecular, phenotypic, and functional profiling of aging antiviral CD8+ memory T cells (CD8+ TM) revealed a pervasive remodeling process that promotes the gradual acquisition of distinct molecular signatures, of increasingly homogeneous phenotypes, and of diversified functionalities that combine to confer a CD8+ TM-autonomous capacity for enhanced recall responses and immune protection. Notably, the process of CD8+ TM aging is characterized by a progressive harmonization of memory and naive T cell traits, is broadly amenable to experimental acceleration or retardation, and serves as a constitutional component for the "rebound model" of memory T cell maturation. By casting CD8+ TM populations within the temporal framework of their slowly evolving properties, this model establishes a simple ontogenetic perspective on the principal organization of CD8+ T cell memory that may directly inform the development of improved diagnostic, prophylactic, and therapeutic modalities.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Animais , Infecções por Arenaviridae/imunologia , Linfócitos T CD8-Positivos/virologia , Degranulação Celular , Diferenciação Celular , Células Cultivadas , Senescência Celular , Quimiocinas/metabolismo , Citotoxicidade Imunológica , Granzimas/metabolismo , Memória Imunológica , Lectinas Tipo C/metabolismo , Linfonodos/citologia , Linfonodos/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transcriptoma
13.
Proc Natl Acad Sci U S A ; 105(46): 18029-34, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19004782

RESUMO

Two related neurodegenerative disorders, Western Pacific amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PD), originally occurred at a high incidence on Guam, in the Kii peninsula of Japan, and in southern West New Guinea more than 50 years ago. These three foci shared a unique mineral environment characterized by the presence of severely low levels of Ca(2+) and Mg(2+), coupled with high levels of bioavailable transition metals in the soil and drinking water. Epidemiological studies suggest that genetic factors also contribute to the etiology of these disorders. Here, we report that a variant of the transient receptor potential melastatin 2 (TRPM2) gene may confer susceptibility to these diseases. TRPM2 encodes a calcium-permeable cation channel highly expressed in the brain that has been implicated in mediating cell death induced by oxidants. We found a heterozygous variant of TRPM2 in a subset of Guamanian ALS (ALS-G) and PD (PD-G) cases. This variant, TRPM2(P1018L), produces a missense change in the channel protein whereby proline 1018 (Pro(1018)) is replaced by leucine (Leu(1018)). Functional studies revealed that, unlike WT TRPM2, P1018L channels inactivate. Our results suggest that the ability of TRPM2 to maintain sustained ion influx is a physiologically important function and that its disruption may, under certain conditions, contribute to disease states.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas Mutantes/metabolismo , Transtornos Parkinsonianos/metabolismo , Canais de Cátion TRPM/metabolismo , Adenosina Difosfato Ribose/farmacologia , Sequência de Aminoácidos , Diamino Aminoácidos/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sequência Conservada , Toxinas de Cianobactérias , Evolução Molecular , Guam , Humanos , Peróxido de Hidrogênio/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Leucina/genética , Magnésio/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Estresse Oxidativo/efeitos dos fármacos , Prolina/genética , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética , Temperatura
14.
BMC Immunol ; 5: 23, 2004 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-15458574

RESUMO

BACKGROUND: Human infections with Sin Nombre virus (SNV) and related New World hantaviruses often lead to hantavirus cardiopulmonary syndrome (HCPS), a sometimes fatal illness. Lungs of patients who die from HCPS exhibit cytokine-producing mononuclear infiltrates and pronounced pulmonary inflammation. Deer mice (Peromyscus maniculatus) are the principal natural hosts of SNV, in which the virus establishes life-long persistence without conspicuous pathology. Little is known about the mechanisms SNV employs to evade the immune response of deer mice, and experimental examination of this question has been difficult because of a lack of methodologies for examining such responses during infection. One such deficiency is our inability to characterize T cell responses because susceptible syngeneic deer mice are not available. RESULTS: To solve this problem, we have developed an in vitro method of expanding and generating competent antigen presenting cells (APC) from deer mouse bone marrow using commercially-available house mouse (Mus musculus) granulocyte-macrophage colony stimulating factor. These cells are capable of processing and presenting soluble protein to antigen-specific autologous helper T cells in vitro. Inclusion of antigen-specific deer mouse antibody augments T cell stimulation, presumably through Fc receptor-mediated endocytosis. CONCLUSIONS: The use of these APC has allowed us to dramatically expand deer mouse helper T cells in culture and should permit extensive characterization of T cell epitopes. Considering the evolutionary divergence between deer mice and house mice, it is probable that this method will be useful to other investigators using unconventional models of rodent-borne diseases.


Assuntos
Peromyscus/genética , Animais , Apresentação de Antígeno/fisiologia , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/fisiologia , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Clonagem Molecular/métodos , Epitopos de Linfócito T/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Hemocianinas/imunologia , Antígenos de Histocompatibilidade Classe II/biossíntese , Humanos , Soros Imunes/biossíntese , Interleucina-2/imunologia , Ativação Linfocitária/fisiologia , Camundongos , Peromyscus/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/biossíntese , Subpopulações de Linfócitos T/fisiologia , Linfócitos T Auxiliares-Indutores/fisiologia
15.
BMC Immunol ; 5: 1, 2004 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-14720307

RESUMO

BACKGROUND: Sin Nombre virus (SNV) establishes a persistent infection in the deer mouse, Peromyscus maniculatus. A strong antibody response occurs in response to SNV infection, but the role of the innate immune response is unclear. To address this issue, we have initiated an effort to identify and characterize deer mouse cytokine and chemokine genes. Such cytokines and chemokines are involved in various aspects of immunity, including the transition from innate to adaptive responses, type I and type II responses, recruitment of leukocytes to sites of infection, and production of mature cells from bone marrow progenitors. RESULTS: We established a colony of SNV antibody-negative deer mice and cloned 11 cytokine and chemokine partial cDNA sequences using directed PCR. Most of the deer mouse sequences were highly conserved with orthologous sequences from other rodent species and functional domains were identified in each putative polypeptide. CONCLUSIONS: The availability of these sequences will allow the examination of the role of these cytokines in deer mouse responses to infection with Sin Nombre virus.


Assuntos
Quimiocinas/genética , Citocinas/genética , Peromyscus/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA Complementar/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Interleucinas/genética , Dados de Sequência Molecular , Peromyscus/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA