Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38717950

RESUMO

The ongoing advancements in CRISPR-Cas technologies can significantly accelerate the preclinical development of both in vivo and ex vivo organ genome-editing therapeutics. One of the promising applications is to genetically modify donor organs prior to implantation. The implantation of optimized donor organs with long-lasting immunomodulatory capacity holds promise for reducing the need for lifelong potent whole-body immunosuppression in recipients. However, assessing genome-targeting interventions in a clinically relevant manner prior to clinical trials remains a major challenge owing to the limited modalities available. This study introduces a novel platform for testing genome editing in human lungs ex vivo, effectively simulating preimplantation genetic engineering of donor organs. We identified gene regulatory elements whose disruption via Cas nucleases led to the upregulation of the immunomodulatory gene interleukin 10 (IL-10). We combined this approach with adenoviral vector-mediated IL-10 delivery to create favorable kinetics for early (immediate postimplantation) graft immunomodulation. Using ex vivo organ machine perfusion and precision-cut tissue slice technology, we demonstrated the feasibility of evaluating CRISPR genome editing in human lungs. To overcome the assessment limitations in ex vivo perfused human organs, we conducted an in vivo rodent study and demonstrated both early gene induction and sustained editing of the lung. Collectively, our findings lay the groundwork for a first-in-human-organ study to overcome the current translational barriers of genome-targeting therapeutics.

2.
J Bacteriol ; 205(6): e0002923, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37260386

RESUMO

Most Pseudomonas aeruginosa strains produce bacteriocins derived from contractile or noncontractile phage tails known as R- and F-type pyocins, respectively. These bacteriocins possess strain-specific bactericidal activity against P. aeruginosa and likely increase evolutionary fitness through intraspecies competition. R-type pyocins have been studied extensively and show promise as alternatives to antibiotics. Although they have similar therapeutic potential, experimental studies on F-type pyocins are limited. Here, we provide a bioinformatic and experimental investigation of F-type pyocins. We introduce a systematic naming scheme for genes found in R- and F-type pyocin operons and identify 15 genes invariably found in strains producing F-type pyocins. Five proteins encoded at the 3' end of the F-type pyocin cluster are divergent in sequence and likely determine bactericidal specificity. We use sequence similarities among these proteins to define eleven distinct F-type pyocin groups, five of which had not been previously described. The five genes encoding the variable proteins associate in two modules that have clearly reassorted independently during the evolution of these operons. These proteins are considerably more diverse than the specificity-determining tail fibers of R-type pyocins, suggesting that F-type pyocins may have emerged earlier. Experimental studies on six F-type pyocin groups show that each displays a distinct spectrum of bactericidal activity. This activity is strongly influenced by the lipopolysaccharide O-antigen type, but other factors also play a role. F-type pyocins appear to kill as efficiently as R-type pyocins. These studies set the stage for the development of F-type pyocins as antibacterial therapeutics. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that causes antibiotic-resistant infections with high mortality rates, particularly in immunocompromised individuals and cystic fibrosis patients. Due to the increasing frequency of multidrug-resistant P. aeruginosa infections, there is great need for the development of alternative therapeutics. In this study, we investigate one such potential therapeutic: F-type pyocins, which are bacteriocins naturally produced by P. aeruginosa that resemble noncontractile phage tails. We show that they are potent killers of P. aeruginosa and identify their probable bactericidal specificity determinants, which opens up the possibility of engineering them to precisely target strains of pathogenic bacteria. The resemblance of F-type pyocins to well-characterized phage tails will greatly facilitate their development into effective antibacterials.


Assuntos
Bacteriocinas , Bacteriófagos , Humanos , Piocinas/farmacologia , Pseudomonas aeruginosa/metabolismo , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bacteriófagos/metabolismo
3.
J Heart Lung Transplant ; 42(10): 1363-1377, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37315746

RESUMO

BACKGROUND: Inflammatory injury in the donor lung remains a persistent challenge in lung transplantation that limits donor organ usage and post-transplant outcomes. Inducing immunomodulatory capacity in donor organs could address this unsolved clinical problem. We sought to apply clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) technologies to the donor lung to fine-tune immunomodulatory gene expression, exploring for the first time the therapeutic use of CRISPR-mediated transcriptional activation in the whole donor lung. METHODS: We explored the feasibility of CRISPR-mediated transcriptional upregulation of interleukin 10 (IL-10), a key immunomodulatory cytokine, in vitro and in vivo. We first evaluated the potency, titratability, and multiplexibility of the gene activation in rat and human cell lines. Next, in vivo CRISPR-mediated IL-10 activation was characterized in rat lungs. Finally, the IL-10-activated donor lungs were transplanted into recipient rats to assess the feasibility in a transplant setting. RESULTS: The targeted transcriptional activation induced robust and titrable IL-10 upregulation in vitro. The combination of guide RNAs also facilitated multiplex gene modulation, that is, simultaneous activation of IL-10 and IL1 receptor antagonist. In vivo profiling demonstrated that adenoviral delivery of Cas9-based activators to the lung was feasible with the use of immunosuppression, which is routinely applied to organ transplant recipients. The transcriptionally modulated donor lungs retained IL-10 upregulation in isogeneic and allogeneic recipients. CONCLUSIONS: Our findings highlight the potential of CRISPR epigenome editing to improve lung transplant outcomes by creating a more favorable immunomodulatory environment in the donor organ, a paradigm that may be extendable to other organ transplants.


Assuntos
Edição de Genes , Interleucina-10 , Humanos , Animais , Ratos , Interleucina-10/genética , Linhagem Celular , Pulmão , Imunomodulação
5.
J Mol Biol ; 425(14): 2450-62, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23542343

RESUMO

The assembly of long non-contractile phage tails begins with the formation of the tail tip complex (TTC). TTCs are multi-functional protein structures that mediate host cell adsorption and genome injection. The TTC of phage λ is assembled from multiple copies of eight different proteins, including gpL. Purified preparations of gpL and several homologues all displayed a distinct reddish color, suggesting the binding of iron by these proteins. Further characterization of the gpL homologue from phage N15, which was most amenable to in vitro analyses, showed that it contains two domains. The C-terminal domain was demonstrated to coordinate an iron-sulfur cluster, providing the first example of a viral structural protein binding to this type of metal group. We characterized the iron-sulfur cluster using inductively coupled plasma-atomic emission spectroscopy, absorbance spectroscopy, and electron paramagnetic resonance spectroscopy and found that it is an oxygen-sensitive [4Fe-4S](2+) cluster. Four highly conserved cysteine residues were shown to be required for coordinating the iron-sulfur cluster, and substitution of any of these Cys residues with Ser or Ala within the context of λ gpL abolished biological activity. These data imply that the intact iron-sulfur cluster is required for function. The presence of four conserved Cys residues in the C-terminal regions of very diverse gpL homologues suggest that utilization of an iron-sulfur cluster is a widespread feature of non-contractile tailed phages that infect Gram-negative bacteria. In addition, this is the first example of a viral structural protein that binds an iron-sulfur cluster.


Assuntos
Bacteriófago lambda/química , Bacteriófago lambda/fisiologia , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Cisteína/metabolismo , Bactérias Gram-Negativas/virologia , Ferro/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxigênio/metabolismo , Ligação Proteica , Alinhamento de Sequência , Análise Espectral , Enxofre/metabolismo
6.
PLoS One ; 7(12): e51282, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251481

RESUMO

There is increasing evidence for the functional importance of multiple dynamically populated states within single proteins. However, peptide binding by protein-protein interaction domains, such as the SH3 domain, has generally been considered to involve the full engagement of peptide to the binding surface with minimal dynamics and simple methods to determine dynamics at the binding surface for multiple related complexes have not been described. We have used NMR spectroscopy combined with isothermal titration calorimetry to comprehensively examine the extent of engagement to the yeast Abp1p SH3 domain for 24 different peptides. Over one quarter of the domain residues display co-linear chemical shift perturbation (CCSP) behavior, in which the position of a given chemical shift in a complex is co-linear with the same chemical shift in the other complexes, providing evidence that each complex exists as a unique dynamic rapidly inter-converting ensemble. The extent the specificity determining sub-surface of AbpSH3 is engaged as judged by CCSP analysis correlates with structural and thermodynamic measurements as well as with functional data, revealing the basis for significant structural and functional diversity amongst the related complexes. Thus, CCSP analysis can distinguish peptide complexes that may appear identical in terms of general structure and percent peptide occupancy but have significant local binding differences across the interface, affecting their ability to transmit conformational change across the domain and resulting in functional differences.


Assuntos
Calorimetria/métodos , Peptídeos/química , Domínios de Homologia de src , Análise por Conglomerados , Ressonância Magnética Nuclear Biomolecular
7.
J Biol Chem ; 287(26): 22133-41, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22570491

RESUMO

Nbp2p is an Src homology 3 (SH3) domain-containing yeast protein that is involved in a variety of cellular processes. This small adaptor protein binds to a number of different proteins through its SH3 domain, and a region N-terminal to the SH3 domain binds to the protein phosphatase, Ptc1p. Despite its involvement in a large number of physical and genetic interactions, the only well characterized function of Nbp2p is to recruit Ptc1p to the high osmolarity glycerol pathway, which results in down-regulation of this pathway. In this study, we have discovered that Nbp2p orthologues exist in all Ascomycete and Basidiomycete fungal genomes and that all possess an SH3 domain and a conserved novel Ptc1p binding motif. The ubiquitous occurrence of these two features, which we have shown are both critical for Nbp2p function in Saccharomyces cerevisiae, implies that a conserved role of Nbp2p in all of these fungal species is the targeting of Ptc1p to proteins recognized by the SH3 domain. We also show that in a manner analogous to its role in the high osmolarity glycerol pathway, Nbp2p functions in the down-regulation of the cell wall integrity pathway through SH3 domain-mediated interaction with Bck1p, a component kinase of this pathway. Based on functional studies on the Schizosaccharomyces pombe and Neurospora crassa Nbp2p orthologues and the high conservation of the Nbp2p binding site in Bck1p orthologues, this function of Nbp2p appears to be conserved across Ascomycetes. Our results also clearly imply a function for the Nbp2p-Ptc1p complex other cellular processes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Fúngica da Expressão Gênica , Neurospora crassa/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Parede Celular/metabolismo , Sistema de Sinalização das MAP Quinases , Dados de Sequência Molecular , Peptídeos/química , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Domínios de Homologia de src
8.
Proteins ; 80(5): 1343-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22274997

RESUMO

Delineating structures of the transition states in protein folding reactions has provided great insight into the mechanisms by which proteins fold. The most common method for obtaining this information is Φ-value analysis, which is carried out by measuring the changes in the folding and unfolding rates caused by single amino acid substitutions at various positions within a given protein. Canonical Φ-values range between 0 and 1, and residues displaying high values within this range are interpreted to be important in stabilizing the transition state structure, and to elicit this stabilization through native-like interactions. Although very successful in defining the general features of transition state structures, Φ-value analysis can be confounded when non-native interactions stabilize this state. In addition, direct information on backbone conformation within the transition state is not provided. In the work described here, we have investigated structure formation at a conserved ß-bulge (with helical conformation) in the Fyn SH3 domain by characterizing the effects of substituting all natural amino acids at one position within this structural motif. By comparing the effects on folding rates of these substitutions with database-derived local structure propensity values, we have determined that this position adopts a non-native backbone conformation in the folding transition state. This result is surprising because this position displays a high and canonical Φ-value of 0.7. This work emphasizes the potential role of non-native conformations in folding pathways and demonstrates that even positions displaying high and canonical Φ-values may, nevertheless, adopt a non-native conformation in the transition state.


Assuntos
Estrutura Secundária de Proteína , Proteínas/química , Cinética , Modelos Moleculares , Dobramento de Proteína , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-fyn/química , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Termodinâmica , Domínios de Homologia de src
9.
J Biol Chem ; 287(12): 9168-77, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22277653

RESUMO

The yeast Nbp2p SH3 and Bem1p SH3b domains bind certain target peptides with similar high affinities, yet display vastly different affinities for other targets. To investigate this unusual behavior, we have solved the structure of the Nbp2p SH3-Ste20 peptide complex and compared it with the previously determined structure of the Bem1p SH3b bound to the same peptide. Although the Ste20 peptide interacts with both domains in a structurally similar manner, extensive in vitro studies with domain and peptide mutants revealed large variations in interaction strength across the binding interface of the two complexes. Whereas the Nbp2p SH3 made stronger contacts with the peptide core RXXPXXP motif, the Bem1p SH3b domain made stronger contacts with residues flanking the core motif. Remarkably, this modulation of local binding energetics can explain the distinct and highly nuanced binding specificities of these two domains.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Proteínas de Transporte , Cristalografia por Raios X , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/genética , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Domínios de Homologia de src
10.
Proteins ; 80(3): 858-70, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22161863

RESUMO

Optimization of surface exposed charge-charge interactions in the native state has emerged as an effective means to enhance protein stability; but the effect of electrostatic interactions on the kinetics of protein folding is not well understood. To investigate the kinetic consequences of surface charge optimization, we characterized the folding kinetics of a Fyn SH3 domain variant containing five amino acid substitutions that was computationally designed to optimize surface charge-charge interactions. Our results demonstrate that this optimized Fyn SH3 domain is stabilized primarily through an eight-fold acceleration in the folding rate. Analyses of the constituent single amino acid substitutions indicate that the effects of optimization of charge-charge interactions on folding rate are additive. This is in contrast to the trend seen in folded state stability, and suggests that electrostatic interactions are less specific in the transition state compared to the folded state. Simulations of the transition state using a coarse-grained chain model show that native electrostatic contacts are weakly formed, thereby making the transition state conducive to nonspecific, or even nonnative, electrostatic interactions. Because folding from the unfolded state to the folding transition state for small proteins is accompanied by an increase in charge density, nonspecific electrostatic interactions, that is, generic charge density effects can have a significant contribution to the kinetics of protein folding. Thus, the interpretation of the effects of amino acid substitutions at surface charged positions may be complicated and consideration of only native-state interactions may fail to provide an adequate picture.


Assuntos
Substituição de Aminoácidos , Proteínas Proto-Oncogênicas c-fyn/química , Proteínas Proto-Oncogênicas c-fyn/genética , Domínios de Homologia de src , Cinética , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Eletricidade Estática , Termodinâmica
11.
Proc Natl Acad Sci U S A ; 108(25): 10168-73, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21646545

RESUMO

Altering the expression level of proteins that are subunits of complexes has been proposed to be particularly detrimental because the resulting stoichiometric imbalance among components would lead to misassembly of the complex. Here we show that assembly of the phage HK97 connector complex is severely inhibited by the overexpression of one of its component proteins, gp6. However, this effect is a result of the unusual mechanism by which the oligomerization and assembly of gp6 are controlled. Alteration of this mechanism by single amino acid substitutions leads to a reversal of the response to gp6 overexpression. Surprisingly, the binding partner of gp6 within the phage particle is expressed at a 500-fold higher concentration despite their identical stoichiometry within the complex. Our data emphasize that a generalized prediction of the effects of changes in the expression level of protein complex subunits is very difficult because these effects are dependent upon assembly mechanism.


Assuntos
Bacteriófagos/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Estruturais Virais/metabolismo , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Escherichia coli/virologia , Regulação Viral da Expressão Gênica , Modelos Moleculares , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética
12.
J Biol Chem ; 286(22): 19470-7, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21489982

RESUMO

The yeast Bem1p SH3b and Nbp2p SH3 domains are unusual because they bind to peptides containing the same consensus sequence, yet they perform different functions and display low sequence similarity. In this work, by analyzing the interactions of these domains with six biologically relevant peptides containing the consensus sequence, they are shown to possess finely tuned and distinct binding specificities. We also identify a residue in the Bem1p SH3b domain that inhibits binding, yet is highly conserved for the purpose of preventing nonspecific interactions. Substitution of this residue results in a marked reduction of in vivo function that is caused by titration of the domain away from its proper targets through nonspecific interactions with other proteins. This work provides a clear illustration of the importance of intrinsic binding specificity for the function of protein-protein interaction modules, and the key role of "negative" interactions in determining the specificity of a domain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Domínios de Homologia de src/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
13.
J Biol Chem ; 284(39): 26918-27, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19590096

RESUMO

SH3 domains, which are among the most frequently occurring protein interaction modules in nature, bind to peptide targets ranging in length from 7 to more than 25 residues. Although the bulk of studies on the peptide binding properties of SH3 domains have focused on interactions with relatively short peptides (less than 10 residues), a number of domains have been recently shown to require much longer sequences for optimal binding affinity. To gain greater insight into the binding mechanism and biological importance of interactions between an SH3 domain and extended peptide sequences, we have investigated interactions of the yeast Abp1p SH3 domain (AbpSH3) with several physiologically relevant 17-residue target peptide sequences. To obtain a molecular model for AbpSH3 interactions, we solved the structure of the AbpSH3 bound to a target peptide from the yeast actin patch kinase, Ark1p. Peptide target complexes from binding partners Scp1p and Sjl2p were also characterized, revealing that the AbpSH3 uses a common extended interface for interaction with these peptides, despite K(d) values for these peptides ranging from 0.3 to 6 mum. Mutagenesis studies demonstrated that residues across the whole 17-residue binding site are important both for maximal in vitro binding affinity and for in vivo function. Sequence conservation analysis revealed that both the AbpSH3 and its extended target sequences are highly conserved across diverse fungal species as well as higher eukaryotes. Our data imply that the AbpSH3 must bind extended target sites to function efficiently inside the cell.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Domínios de Homologia de src , Sequência de Aminoácidos , Sítios de Ligação/genética , Biologia Computacional , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
14.
Protein Sci ; 18(3): 526-36, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19241379

RESUMO

Trimethylamine-N-oxide (TMAO) is a naturally occurring osmolyte that stabilizes proteins against denaturation. Although the impact of TMAO on the folding thermodynamics of many proteins has been well characterized, far fewer studies have investigated its effects on protein folding kinetics. In particular, no previous studies have used Phi-value analysis to determine whether TMAO may alter the structure of the folding transition state. Here we have measured the effects on folding kinetics of 16 different amino acid substitutions distributed across the structure of the Fyn SH3 domain both in the presence and absence of TMAO. The folding and unfolding rates in TMAO, on average, improved to equivalent degrees, with a twofold increase in the protein folding rate accompanied by a twofold decrease in the unfolding rate. Importantly, TMAO caused little alteration to the Phi-values of the mutants tested, implying that this compound minimally perturbs the folding transition state structure. Furthermore, the solvent accessibility of the transition state was not altered as reflected in an absence of a TMAO-induced change in the denaturant beta(T) (D) factors. Through TMAO-induced folding studies, a beta(T) (TMAO) factor of 0.5 was calculated for this compound, suggesting that the protein backbone, which is the target of action of TMAO, is 50% exposed in the transition state as compared to the native state. This finding is consistent with the equivalent effects of TMAO on the folding and unfolding rates. Through thermodynamic analysis of mutants, we also discovered that the stabilizing effect of TMAO is lessened with increasing temperature.


Assuntos
Metilaminas/química , Dobramento de Proteína , Proteínas Proto-Oncogênicas c-fyn/química , Proteínas Proto-Oncogênicas c-fyn/genética , Domínios de Homologia de src/genética , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/fisiologia , Guanidina/química , Cinética , Modelos Moleculares , Conformação Proteica , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Temperatura , Termodinâmica , Domínios de Homologia de src/fisiologia
15.
J Am Chem Soc ; 131(6): 2283-9, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19170498

RESUMO

Photoswitchable proteins offer exciting prospects for remote control of biochemical processes. We propose a general approach to the design of photoswitchable proteins based on the introduction of a photoswitchable intramolecular cross-linker. We chose, as a model, a FynSH3 domain for which the free energy of folding is less than the energy available from photoisomerization of the cross-linker. Taking the experimentally determined structure of the folded protein as a starting point, mutations were made to introduce pairs of Cys residues so that the distance between Cys sulfur atoms matches the ideal length of the cis form, but not the trans form, of the cross-linker. When the trans cross-linker was introduced into this L3C-L29C-T47AFynSH3 mutant, the protein was destabilized so that folded and unfolded forms coexisted. Irradiation of the cross-linker to produce the cis isomer recovered the folded, active state of the protein. This work shows that structure-based introduction of switchable cross-linkers is a feasible approach for photocontrol of folding/unfolding of globular proteins.


Assuntos
Dobramento de Proteína , Proteínas Proto-Oncogênicas c-fyn/química , Compostos Azo/química , Calorimetria , Dicroísmo Circular , Reagentes de Ligações Cruzadas/química , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Processos Fotoquímicos , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Domínios de Homologia de src
16.
Proc Natl Acad Sci U S A ; 105(29): 9999-10004, 2008 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-18626019

RESUMO

Many experimental and theoretical studies have suggested a significant role for nonnative interactions in protein folding pathways, but the energetic contributions of these interactions are not well understood. We have addressed the energetics and the position specificity of nonnative hydrophobic interactions by developing a continuum coarse-grained chain model with a native-centric potential augmented by sequence-dependent hydrophobic interactions. By modeling the effect of different hydrophobicity values at various positions in the Fyn SH3 domain, we predicted energetically significant nonnative interactions that led to acceleration or deceleration of the folding rate depending on whether they were more populated in the transition state or unfolded state. These nonnative contacts were centered on position 53 in the Fyn SH3 domain, which lies in an exposed position in a 3(10)-helix. The energetic importance of the predicted nonnative interactions was confirmed experimentally by folding kinetics studies combined with double mutant thermodynamic cycles. By attaining agreement of theoretical and experimental investigations, this study provides a compelling demonstration that specific nonnative interactions can significantly influence folding energetics. Moreover, we show that a coarse-grained model with a simple consideration of hydrophobicity is sufficient for the accurate prediction of kinetically important nonnative interactions.


Assuntos
Dobramento de Proteína , Substituição de Aminoácidos , Fenômenos Biofísicos , Biofísica , Simulação por Computador , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Proto-Oncogênicas c-fyn/química , Proteínas Proto-Oncogênicas c-fyn/genética , Termodinâmica , Domínios de Homologia de src
17.
J Mol Biol ; 377(3): 889-901, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18280496

RESUMO

The yeast Fus1p SH3 domain binds to peptides containing the consensus motif, R(S/T)(S/T)SL, which is a sharp contrast to most SH3 domains, which bind to PXXP-containing peptides. Here, we have demonstrated that this domain binds to R(S/T)(S/T)SL-containing peptides derived from two putative in vivo binding partners from yeast proteins, Bnr1p and Ste5p, with K(d) values in the low micromolar range. The R(S/T)(S/T)SL consensus motif is necessary, but not sufficient for binding to the Fus1p SH3 domain, as residues lying N-terminal to the consensus motif also play a critical role in the binding reaction. Through mutagenesis studies and comparisons to other SH3 domains, we have discovered that the Fus1p SH3 domain utilizes a portion of the same binding surface as typical SH3 domains. However, the PXXP-binding surface, which plays the predominant role in binding for most SH3 domains, is debilitated in the WT domain by the substitution of unusual residues at three key conserved positions. By replacing these residues, we created a version of the Fus1p SH3 domain that binds to a PXXP-containing peptide with extremely high affinity (K(d)= 40 nM). Based on our data and analysis, we have clearly delineated two distinct surfaces comprising the typical SH3-domain-binding interface and show that one of these surfaces is the primary mediator of almost every "non-canonical" SH3-domain-mediated interaction described in the literature. Within this framework, dramatic alterations in SH3 domain specificity can be simply explained as a modulation of the binding strengths of these two surfaces.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Domínios de Homologia de src , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Proteínas do Citoesqueleto/química , Proteínas de Membrana , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Peptídeos/química , Ligação Proteica , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/genética
18.
Protein Sci ; 16(12): 2694-702, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18029422

RESUMO

Computational design of surface charge-charge interactions has been demonstrated to be an effective way to increase both the thermostability and the stability of proteins. To test the robustness of this approach for proteins with predominantly beta-sheet secondary structure, the chicken isoform of the Fyn SH3 domain was used as a model system. Computational analysis of the optimal distribution of surface charges showed that the increase in favorable energy per substitution begins to level off at five substitutions; hence, the designed Fyn sequence contained four charge reversals at existing charged positions and one introduction of a new charge. Three additional variants were also constructed to explore stepwise contributions of these substitutions to Fyn stability. The thermodynamic stabilities of the variants were experimentally characterized using differential scanning calorimetry and far-UV circular dichroism spectroscopy and are in very good agreement with theoretical predictions from the model. The designed sequence was found to have increased the melting temperature, DeltaT (m) = 12.3 +/- 0.2 degrees C, and stability, DeltaDeltaG(25 degrees C) = 7.1 +/- 2.2 kJ/mol, relative to the wild-type protein. The experimental data suggest that a significant increase in stability can be achieved through a very small number of amino acid substitutions. Consistent with a number of recent studies, the presented results clearly argue for a seminal role of surface charge-charge interactions in determining protein stability and suggest that the optimization of surface interactions can be an attractive strategy to complement algorithms optimizing interactions in the protein core to further enhance protein stability.


Assuntos
Substituição de Aminoácidos , Proteínas Proto-Oncogênicas c-fyn/química , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Sequência de Aminoácidos , Animais , Galinhas , Dicroísmo Circular , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Engenharia de Proteínas , Dobramento de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Termodinâmica , Temperatura de Transição
19.
J Mol Biol ; 373(3): 764-74, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17850820

RESUMO

Structural database-derived propensities for amino acids to adopt particular local protein structures, such as alpha-helix and beta-strand, have long been recognized and effectively exploited for the prediction of protein secondary structure. However, the experimental verification of database-derived propensities using mutagenesis studies has been problematic, especially for beta-strand propensities, because local structural preferences are often confounded by non-local interactions arising from formation of the native tertiary structure. Thus, the overall thermodynamic stability of a protein is not always altered in a predictable manner by changes in local structural propensity at a single position. In this study, we have undertaken an investigation of the relationship between beta-strand propensity and protein folding kinetics. By characterizing the effects of a wide variety of amino acid substitutions at two different beta-strand positions in an SH3 domain, we have found that the observed changes in protein folding rates are very well correlated to beta-strand propensities for almost all of the substitutions examined. In contrast, there is little correlation between propensities and unfolding rates. These data indicate that beta-strand conformation is well formed in the structured portion of the SH3 domain transition state, and that local structure propensity strongly influences the stability of the transition state. Since the transition state is known to be packed more loosely than the native state and likely lacks many of the non-local stabilizing interactions seen in the native state, we suggest that folding kinetics studies may generally provide an effective means for the experimental validation of database-derived local structural propensities.


Assuntos
Dobramento de Proteína , Proteínas Proto-Oncogênicas c-fyn/química , Substituição de Aminoácidos , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Termodinâmica , Domínios de Homologia de src
20.
Proc Natl Acad Sci U S A ; 104(40): 15717-22, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17898173

RESUMO

Experimental studies of protein folding frequently are consistent with two-state folding kinetics. However, recent NMR relaxation dispersion studies of several fast-folding mutants of the Fyn Src homology 3 (SH3) domain have established that folding proceeds through a low-populated on-pathway intermediate, which could not be detected with stopped-flow experiments. The dispersion experiments provide precise kinetic and thermodynamic parameters that describe the folding pathway, along with a detailed site-specific structural characterization of both the intermediate and unfolded states from the NMR chemical shifts that are extracted. Here we describe NMR relaxation dispersion Phi-value analysis of the A39V/N53P/V55L Fyn SH3 domain, where the effects of suitable point mutations on the energy landscape are quantified, providing additional insight into the structure of the folding intermediate along with per-residue structural information of both rate-limiting transition states that was not available from previous studies. In addition to the advantage of delineating the full three-state folding pathway, the use of NMR relaxation dispersion as opposed to stopped-flow kinetics to quantify Phi values facilitates their interpretation because the obtained chemical shifts monitor any potential structural changes along the folding pathway that might be introduced by mutation, a significant concern in their analysis. Phi-Value analysis of several point mutations of A39V/N53P/V55L Fyn SH3 establishes that the beta(3)-beta(4)-hairpin already is formed in the first transition state, whereas strand beta(1), which forms nonnative interactions in the intermediate, does not fully adopt its native conformation until after the final transition state. The results further support the notion that on-pathway intermediates can be stabilized by nonnative contacts.


Assuntos
Dobramento de Proteína , Proteínas Proto-Oncogênicas c-fyn/química , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Substituição de Aminoácidos , Cinética , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Mutação , Mutação Puntual , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA