Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 224: 105837, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387750

RESUMO

The COVID-19 pandemic has shown the need to develop effective therapeutics in preparedness for further epidemics of virus infections that pose a significant threat to human health. As a natural compound antiviral candidate, we focused on α-dystroglycan, a highly glycosylated basement membrane protein that links the extracellular matrix to the intracellular cytoskeleton. Here we show that the N-terminal fragment of α-dystroglycan (α-DGN), as produced in E. coli in the absence of post-translational modifications, blocks infection of SARS-CoV-2 in cell culture, human primary gut organoids and the lungs of transgenic mice expressing the human receptor angiotensin I-converting enzyme 2 (hACE2). Prophylactic and therapeutic administration of α-DGN reduced SARS-CoV-2 lung titres and protected the mice from respiratory symptoms and death. Recombinant α-DGN also blocked infection of a wide range of enveloped viruses including the four Dengue virus serotypes, influenza A virus, respiratory syncytial virus, tick-borne encephalitis virus, but not human adenovirus, a non-enveloped virus in vitro. This study establishes soluble recombinant α-DGN as a broad-band, natural compound candidate therapeutic against enveloped viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Humanos , Distroglicanas , Pandemias , Escherichia coli , Camundongos Transgênicos , Antivirais/farmacologia
2.
Antib Ther ; 6(4): 277-297, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38075238

RESUMO

Background: Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods: Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results: Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion: Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.

3.
Elife ; 122023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37310006

RESUMO

Coronavirus disease-19 (COVID-19) causes immune perturbations which may persist long term, and patients frequently report ongoing symptoms for months after recovery. We assessed immune activation at 3-12 months post hospital admission in 187 samples from 63 patients with mild, moderate, or severe disease and investigated whether it associates with long COVID. At 3 months, patients with severe disease displayed persistent activation of CD4+ and CD8+ T-cells, based on expression of HLA-DR, CD38, Ki67, and granzyme B, and elevated plasma levels of interleukin-4 (IL-4), IL-7, IL-17, and tumor necrosis factor-alpha (TNF-α) compared to mild and/or moderate patients. Plasma from severe patients at 3 months caused T-cells from healthy donors to upregulate IL-15Rα, suggesting that plasma factors in severe patients may increase T-cell responsiveness to IL-15-driven bystander activation. Patients with severe disease reported a higher number of long COVID symptoms which did not however correlate with cellular immune activation/pro-inflammatory cytokines after adjusting for age, sex, and disease severity. Our data suggests that long COVID and persistent immune activation may correlate independently with severe disease.


Assuntos
COVID-19 , Humanos , Síndrome de COVID-19 Pós-Aguda , Linfócitos T CD8-Positivos , SARS-CoV-2/metabolismo , Citocinas/metabolismo
4.
J Virol ; 96(23): e0087922, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36377874

RESUMO

The glycan loop of Zika virus (ZIKV) envelope protein (E) contains the glycosylation site and has been well documented to be important for viral pathogenesis and transmission. In the present study, we report that deletions in the E glycan loop, which were recorded in African ZIKV strains previously, have re-emerged in their contemporary Asian lineages. Here, we generated recombinant ZIKV containing specific deletions in the E glycan loop by reverse genetics. Extensive in vitro and in vivo characterization of these deletion mutants demonstrated an attenuated phenotype in an adult A129 mouse model and reduced oral infections in mosquitoes. Surprisingly, these glycan loop deletion mutants exhibited an enhanced neurovirulence phenotype, and resulted in a more severe microcephalic brain in neonatal mouse models. Crystal structures of the ZIKV E protein and a deletion mutant at 2.5 and 2.6 Å, respectively, revealed that deletion of the glycan loop induces encephalitic flavivirus-like conformational alterations, including the appearance of perforations on the surface and a clear change in the topology of the loops. Overall, our results demonstrate that the E glycan loop deletions represent neonatal mouse neurovirulence markers of ZIKV. IMPORTANCE Zika virus (ZIKV) has been identified as a cause of microcephaly and acquired evolutionary mutations since its discovery. Previously deletions in the E glycan loop were recorded in African ZIKV strains, which have re-emerged in the contemporary Asian lineages recently. The glycan loop deletion mutants are not glycosylated, which are attenuated in adult A129 mouse model and reduced oral infections in mosquitoes. More importantly, the glycan loop deletion mutants induce an encephalitic flavivirus-like conformational alteration in the E homodimer, resulting in a significant enhancement of neonatal mouse neurovirulence. This study underscores the critical role of glycan loop deletion mutants in ZIKV pathogenesis, highlighting a need for global virological surveillance for such ZIKV variants.


Assuntos
Proteínas do Envelope Viral , Infecção por Zika virus , Zika virus , Animais , Camundongos , Modelos Animais de Doenças , Polissacarídeos/química , Proteínas do Envelope Viral/genética , Virulência , Replicação Viral/genética , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/virologia
5.
Front Immunol ; 13: 968317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439154

RESUMO

Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Proteínas do Envelope Viral , Estudos Soroepidemiológicos , COVID-19/diagnóstico , Glicoproteínas de Membrana
6.
Nat Microbiol ; 6(7): 899-909, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33907312

RESUMO

SARS-CoV-2 entry requires sequential cleavage of the spike glycoprotein at the S1/S2 and the S2' cleavage sites to mediate membrane fusion. SARS-CoV-2 has a polybasic insertion (PRRAR) at the S1/S2 cleavage site that can be cleaved by furin. Using lentiviral pseudotypes and a cell-culture-adapted SARS-CoV-2 virus with an S1/S2 deletion, we show that the polybasic insertion endows SARS-CoV-2 with a selective advantage in lung cells and primary human airway epithelial cells, but impairs replication in Vero E6, a cell line used for passaging SARS-CoV-2. Using engineered spike variants and live virus competition assays and by measuring growth kinetics, we find that the selective advantage in lung and primary human airway epithelial cells depends on the expression of the cell surface protease TMPRSS2, which enables endosome-independent virus entry by a route that avoids antiviral IFITM proteins. SARS-CoV-2 virus lacking the S1/S2 furin cleavage site was shed to lower titres from infected ferrets and was not transmitted to cohoused sentinel animals, unlike wild-type virus. Analysis of 100,000 SARS-CoV-2 sequences derived from patients and 24 human postmortem tissues showed low frequencies of naturally occurring mutants that harbour deletions at the polybasic site. Taken together, our findings reveal that the furin cleavage site is an important determinant of SARS-CoV-2 transmission.


Assuntos
COVID-19/transmissão , Furina/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , COVID-19/virologia , Catepsinas/metabolismo , Chlorocebus aethiops , Endossomos/metabolismo , Células Epiteliais , Furões , Humanos , Evasão da Resposta Imune , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sistema Respiratório/citologia , Sistema Respiratório/virologia , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Empacotamento do Genoma Viral , Internalização do Vírus , Replicação Viral , Eliminação de Partículas Virais
7.
Genome Med ; 13(1): 43, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722288

RESUMO

BACKGROUND: ChAdOx1 nCoV-19 is a recombinant adenovirus vaccine against SARS-CoV-2 that has passed phase III clinical trials and is now in use across the globe. Although replication-defective in normal cells, 28 kbp of adenovirus genes is delivered to the cell nucleus alongside the SARS-CoV-2 S glycoprotein gene. METHODS: We used direct RNA sequencing to analyse transcript expression from the ChAdOx1 nCoV-19 genome in human MRC-5 and A549 cell lines that are non-permissive for vector replication alongside the replication permissive cell line, HEK293. In addition, we used quantitative proteomics to study over time the proteome and phosphoproteome of A549 and MRC5 cells infected with the ChAdOx1 nCoV-19 vaccine. RESULTS: The expected SARS-CoV-2 S coding transcript dominated in all cell lines. We also detected rare S transcripts with aberrant splice patterns or polyadenylation site usage. Adenovirus vector transcripts were almost absent in MRC-5 cells, but in A549 cells, there was a broader repertoire of adenoviral gene expression at very low levels. Proteomically, in addition to S glycoprotein, we detected multiple adenovirus proteins in A549 cells compared to just one in MRC5 cells. CONCLUSIONS: Overall, the ChAdOx1 nCoV-19 vaccine's transcriptomic and proteomic repertoire in cell culture is as expected. The combined transcriptomic and proteomics approaches provide a detailed insight into the behaviour of this important class of vaccine using state-of-the-art techniques and illustrate the potential of this technique to inform future viral vaccine vector design.


Assuntos
Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/metabolismo , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/genética , Linhagem Celular , Células Cultivadas , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Poliadenilação , Proteômica/métodos , RNA Mensageiro , RNA Viral , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Transcrição Gênica
8.
Science ; 370(6518): 861-865, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33082294

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), uses the viral spike (S) protein for host cell attachment and entry. The host protease furin cleaves the full-length precursor S glycoprotein into two associated polypeptides: S1 and S2. Cleavage of S generates a polybasic Arg-Arg-Ala-Arg carboxyl-terminal sequence on S1, which conforms to a C-end rule (CendR) motif that binds to cell surface neuropilin-1 (NRP1) and NRP2 receptors. We used x-ray crystallography and biochemical approaches to show that the S1 CendR motif directly bound NRP1. Blocking this interaction by RNA interference or selective inhibitors reduced SARS-CoV-2 entry and infectivity in cell culture. NRP1 thus serves as a host factor for SARS-CoV-2 infection and may potentially provide a therapeutic target for COVID-19.


Assuntos
Betacoronavirus/fisiologia , Neuropilina-1/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Motivos de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , COVID-19 , Células CACO-2 , Infecções por Coronavirus/virologia , Cristalografia por Raios X , Furina/metabolismo , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Neuropilina-1/antagonistas & inibidores , Neuropilina-1/química , Neuropilina-1/genética , Pandemias , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
9.
IEEE Int Conf Rehabil Robot ; 2017: 175-180, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28813814

RESUMO

Tremor is the most common movement deficit and manifests in a variety of disorders, including Essential Tremor, Parkinson's Disease, Dystonia, and Cerebellar Ataxia. Although medication and surgical interventions have significantly reduced patient suffering, they are only partially effective and can carry undesired side effects, leaving many patients without satisfactory treatment options. Wearable tremor-suppressing devices could provide an alternative to medication and surgery. Multiple research groups have developed orthotic prototypes to low-pass filter tremor, but these devices have not yet been optimized for in-vivo use. Optimizing non-invasive tremor suppression requires an understanding of where the tremor originates mechanically (which muscles) and how it propagates to the hand (where it matters most). Here we present on the beginnings of our multi-pronged work to determine the origin, propagation, and distribution of Essential Tremor, and we provide preliminary results.


Assuntos
Tremor Essencial/diagnóstico , Tremor Essencial/fisiopatologia , Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento , Tremor Essencial/prevenção & controle , Humanos , Modelos Teóricos , Ombro/fisiologia , Punho/fisiologia
10.
Cell Death Dis ; 8(5): e2771, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492543

RESUMO

Tamoxifen binds to oestrogen receptor α (ERα) to elicit distinct responses that vary by cell/tissue type and status, but the factors that determine these differential effects are unknown. Here we report that the transcriptional corepressor BASP1 interacts with ERα and in breast cancer cells, this interaction is enhanced by tamoxifen. We find that BASP1 acts as a major selectivity factor in the transcriptional response of breast cancer cells to tamoxifen. In all, 40% of the genes that are regulated by tamoxifen in breast cancer cells are BASP1 dependent, including several genes that are associated with tamoxifen resistance. BASP1 elicits tumour-suppressor activity in breast cancer cells and enhances the antitumourigenic effects of tamoxifen treatment. Moreover, BASP1 is expressed in breast cancer tissue and is associated with increased patient survival. Our data have identified BASP1 as an ERα cofactor that has a central role in the transcriptional and antitumourigenic effects of tamoxifen.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/biossíntese , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/biossíntese , Proteínas de Neoplasias/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Proteínas Repressoras/biossíntese , Tamoxifeno/farmacologia , Transcrição Gênica/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Células K562 , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética
11.
PLoS Pathog ; 10(10): e1004434, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340500

RESUMO

Dengue virus (DENV) is the leading cause of mosquito-borne viral illness and death in humans. Like many viruses, DENV has evolved potent mechanisms that abolish the antiviral response within infected cells. Nevertheless, several in vivo studies have demonstrated a key role of the innate immune response in controlling DENV infection and disease progression. Here, we report that sensing of DENV infected cells by plasmacytoid dendritic cells (pDCs) triggers a robust TLR7-dependent production of IFNα, concomitant with additional antiviral responses, including inflammatory cytokine secretion and pDC maturation. We demonstrate that unlike the efficient cell-free transmission of viral infectivity, pDC activation depends on cell-to-cell contact, a feature observed for various cell types and primary cells infected by DENV, as well as West Nile virus, another member of the Flavivirus genus. We show that the sensing of DENV infected cells by pDCs requires viral envelope protein-dependent secretion and transmission of viral RNA. Consistently with the cell-to-cell sensing-dependent pDC activation, we found that DENV structural components are clustered at the interface between pDCs and infected cells. The actin cytoskeleton is pivotal for both this clustering at the contacts and pDC activation, suggesting that this structural network likely contributes to the transmission of viral components to the pDCs. Due to an evolutionarily conserved suboptimal cleavage of the precursor membrane protein (prM), DENV infected cells release uncleaved prM containing-immature particles, which are deficient for membrane fusion function. We demonstrate that cells releasing immature particles trigger pDC IFN response more potently than cells producing fusion-competent mature virus. Altogether, our results imply that immature particles, as a carrier to endolysosome-localized TLR7 sensor, may contribute to regulate the progression of dengue disease by eliciting a strong innate response.


Assuntos
Células Dendríticas/virologia , Vírus da Dengue , Proteínas do Envelope Viral/metabolismo , Citoesqueleto de Actina/metabolismo , Evolução Biológica , Linhagem Celular , Humanos , Imunidade Inata/imunologia , Fusão de Membrana/fisiologia
12.
PLoS One ; 9(3): e93305, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24671231

RESUMO

Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.


Assuntos
Vírus da Dengue/fisiologia , Dengue/metabolismo , Proteoma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dengue/virologia , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem , Proteínas Virais/metabolismo
13.
J Biol Chem ; 288(31): 22621-35, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23770669

RESUMO

The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-ß did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes.


Assuntos
Núcleo Celular/metabolismo , Vírus da Dengue/fisiologia , Proteínas Estruturais Virais/metabolismo , Linhagem Celular , Movimento Celular , Humanos
14.
J Biol Chem ; 285(24): 18817-27, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20375022

RESUMO

The dengue virus (DENV) NS3 protein is essential for viral polyprotein processing and RNA replication. It contains an N-terminal serine protease region (residues 1-168) joined to an RNA helicase (residues 180-618) by an 11-amino acid linker (169-179). The structure at 3.15 A of the soluble NS3 protein from DENV4 covalently attached to 18 residues of the NS2B cofactor region (NS2B(18)NS3) revealed an elongated molecule with the protease domain abutting subdomains I and II of the helicase (Luo, D., Xu, T., Hunke, C., Grüber, G., Vasudevan, S. G., and Lescar, J. (2008) J. Virol. 82, 173-183). Unexpectedly, using similar crystal growth conditions, we observed an alternative conformation where the protease domain has rotated by approximately 161 degrees with respect to the helicase domain. We report this new crystal structure bound to ADP-Mn(2+) refined to a resolution of 2.2 A. The biological significance for interdomain flexibility conferred by the linker region was probed by either inserting a Gly residue between Glu(173) and Pro(174) or replacing Pro(174) with a Gly residue. Both mutations resulted in significantly lower ATPase and helicase activities. We next increased flexibility in the linker by introducing a Pro(176) to Gly mutation in a DENV2 replicon system. A 70% reduction in luciferase reporter signal and a similar reduction in the level of viral RNA synthesis were observed. Our results indicate that the linker region has evolved to an optimum length to confer flexibility to the NS3 protein that is required both for polyprotein processing and RNA replication.


Assuntos
DNA Helicases/química , Peptídeo Hidrolases/química , Proteínas não Estruturais Virais/metabolismo , Difosfato de Adenosina/química , Clonagem Molecular , Cristalografia por Raios X/métodos , Glicina/química , Manganês/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA/química , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo
15.
J Gen Virol ; 90(Pt 10): 2457-2461, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19587132

RESUMO

The dengue virus envelope glycoprotein mediates virus attachment and entry and is the major viral antigen. The identification of 'critical' amino acids in the envelope glycoprotein that cannot be altered without loss of infectivity could have a major impact on the development of dengue virus vaccines and diagnostics. In this context, we determined whether six amino acids, previously predicted by computational analysis to play a critical role in the virus life cycle, were essential for virus viability. The effects of mutating the six 'critical' amino acids and a further seven 'neutral' amino acids were analysed by using a dengue virus type 2 infectious cDNA clone. Of the six critical amino acids, three (Asp-215, Pro-217 and His-244) were found to be essential for virus viability in mammalian and mosquito cells.


Assuntos
Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Proteínas do Envelope Viral/química , Aedes/citologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Cricetinae , DNA Complementar/genética , DNA Viral/genética , Vírus da Dengue/classificação , Regulação Viral da Expressão Gênica/fisiologia , Mutação , Proteínas do Envelope Viral/genética
16.
J Biol Chem ; 283(28): 19410-21, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18469001

RESUMO

The Flavivirus NS5 protein possesses both (guanine-N7)-methyltransferase and nucleoside-2'-O methyltransferase activities required for sequential methylation of the cap structure present at the 5' end of the Flavivirus RNA genome. Seventeen mutations were introduced into the dengue virus type 2 NS5 methyltransferase domain, targeting amino acids either predicted to be directly involved in S-adenosyl-l-methionine binding or important for NS5 conformation and/or charged interactions. The effects of the mutations on (i) (guanine-N7)-methyltransferase and nucleoside-2'-O methyltransferase activities using biochemical assays based on a bacterially expressed NS5 methyltransferase domain and (ii) viral replication using a dengue virus type 2 infectious cDNA clone were examined. Clustered mutations targeting the S-adenosyl-l-methionine binding pocket or an active site residue abolished both methyltransferase activities and viral replication, demonstrating that both methyltransferase activities utilize a single S-adenosyl-l-methionine binding pocket. Substitutions to single amino acids binding S-adenosyl-l-methionine decreased both methyltransferase activities by varying amounts. However, viruses that replicated at wild type levels could be recovered with mutations that reduced both activities by >75%, suggesting that only a threshold level of methyltransferase activity was required for virus replication in vivo. Mutation of residues outside of regions directly involved in S-adenosyl-l-methionine binding or catalysis also affected methyltransferase activity and virus replication. The recovery of viruses containing compensatory second site mutations in the NS5 and NS3 proteins identified regions of the methyltransferase domain important for overall stability of the protein or likely to play a role in virus replication distinct from that of cap methylation.


Assuntos
Vírus da Dengue/enzimologia , Genoma Viral/fisiologia , Metiltransferases/metabolismo , Mutagênese , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Aedes , Substituição de Aminoácidos , Animais , Sítios de Ligação/genética , Catálise , Chlorocebus aethiops , Vírus da Dengue/genética , Estabilidade Enzimática/fisiologia , Metiltransferases/genética , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína/fisiologia , RNA Viral/genética , RNA Viral/metabolismo , S-Adenosilmetionina/genética , S-Adenosilmetionina/metabolismo , Células Vero , Proteínas não Estruturais Virais/genética
17.
J Gen Virol ; 88(Pt 12): 3244-3248, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18024892

RESUMO

Adenovirus infection subverts nucleolar structure and function. B23 is a nucleolar protein present in two isoforms (B23.1 and B23.2) and both isoforms have been identified as stimulatory factors for adenovirus DNA replication. Here, it is demonstrated that the two isoforms of B23, B23.1 and B23.2, interact and co-localize differently with viral DNA replication proteins pTP and DBP in adenovirus-infected cells. Thus, the mechanism by which the two proteins stimulate viral DNA replication is likely to differ. These data also demonstrate the importance of testing both isoforms of B23 for interactions with viral proteins and nucleic acids.


Assuntos
Infecções por Adenoviridae/metabolismo , Adenoviridae/fisiologia , DNA Viral/biossíntese , Proteínas Nucleares/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Infecções por Adenoviridae/virologia , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Células HeLa , Humanos , Ligação Proteica
18.
J Gen Virol ; 85(Pt 12): 3627-3636, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15557235

RESUMO

The mature flavivirus particle comprises a nucleocapsid core surrounded by a lipid bilayer containing the membrane (M) (derived from the precursor prM) and envelope (E) proteins. The formation of intracellular prM/E heterodimers occurs rapidly after translation and is believed to be important for the assembly and secretion of immature virus particles. In this study, the role of the His residue at position 39 in the M protein (M39) of dengue virus type 2 (DENV-2) in the virus life cycle was investigated. Mutations encoding basic (Arg), non-polar (Leu and Pro) and uncharged polar (Asn, Gln and Tyr) amino acids at M39 were introduced into a DENV-2 genomic-length cDNA clone and their effects on virus replication were examined. Substitution of the His residue with non-polar amino acids abolished virus replication, whereas substitution with basic or uncharged polar amino acids decreased virus replication moderately ( approximately 2 log(10) p.f.u. ml(-1) decrease in viral titre for Arg and Asn) or severely (>3.5 log(10) p.f.u. ml(-1) decrease in viral titre for Gln and Tyr). Selected mutations were introduced into a prM-E gene cassette and expressed transiently in COS cells to investigate whether the mutations impaired prM/E association or secretion. None of the mutations was found to disrupt the formation of intracellular prM/E heterodimers. However, the mutations that abolished virus replication prevented secretion of prM/E complexes. The results of this study pinpoint a critical residue in the M protein that potentially plays a role in viral morphogenesis, secretion and entry.


Assuntos
Vírus da Dengue/fisiologia , Proteínas do Envelope Viral/fisiologia , Montagem de Vírus , Animais , Células COS , Cricetinae , Histidina
19.
J Virol ; 77(6): 3655-68, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12610141

RESUMO

Two yellow fever virus (YFV)/dengue virus chimeras which encode the prM and E proteins of either dengue virus serotype 2 (dengue-2 virus) or dengue-4 virus within the genome of the YFV 17D strain (YF5.2iv infectious clone) were constructed and characterized for their properties in cell culture and as experimental vaccines in mice. The prM and E proteins appeared to be properly processed and glycosylated, and in plaque reduction neutralization tests and other assays of antigenic specificity, the E proteins exhibited profiles which resembled those of the homologous dengue virus serotypes. Both chimeric viruses replicated in cell lines of vertebrate and mosquito origin to levels comparable to those of homologous dengue viruses but less efficiently than the YF5.2iv parent. YFV/dengue-4 virus, but not YFV/dengue-2 virus, was neurovirulent for 3-week-old mice by intracerebral inoculation; however, both viruses were attenuated when administered by the intraperitoneal route in mice of that age. Single-dose inoculation of either chimeric virus at a dose of 10(5) PFU by the intraperitoneal route induced detectable levels of neutralizing antibodies against the homologous dengue virus strains. Mice which had been immunized in this manner were fully protected from challenge with homologous neurovirulent dengue viruses by intracerebral inoculation compared to unimmunized mice. Protection was associated with significant increases in geometric mean titers of neutralizing antibody compared to those for unimmunized mice. These data indicate that YFV/dengue virus chimeras elicit antibodies which represent protective memory responses in the mouse model of dengue encephalitis. The levels of neurovirulence and immunogenicity of the chimeric viruses in mice correlate with the degree of adaptation of the dengue virus strain to mice. This study supports ongoing investigations concerning the use of this technology for development of a live attenuated viral vaccine against dengue viruses.


Assuntos
Vírus da Dengue/imunologia , Dengue/prevenção & controle , Encefalite Viral/prevenção & controle , Proteínas Recombinantes de Fusão/imunologia , Vacinas Virais/imunologia , Vírus da Febre Amarela/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos ICR , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/patogenicidade
20.
J Gen Virol ; 82(Pt 7): 1647-1656, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11413376

RESUMO

The N-terminal one-third of the NS3 protein of Dengue virus type 2 (DEN-2) complexes with co-factor NS2B to form an active serine proteinase which cleaves the viral polyprotein. To identify sites within NS3 that may interact with NS2B, seven regions within the NS3 proteinase outside the conserved flavivirus enzyme motifs were mutated by alanine replacement. Five sites contained clusters of charged residues and were hydrophilic. Two sites were hydrophobic and highly conserved among flaviviruses. The effects of five mutations on NS2B/3 processing were examined using a COS cell expression system. Four retained significant proteinase activity. Three of these mutations and two more were introduced into genomic-length cDNA and tested for their effects on virus replication. The five mutant viruses showed reduced plaque size and two of the five showed significantly reduced titres. All seven mutations were mapped on the X-ray crystal structure of the DEN-2 NS3 proteinase: three were located at the N terminus and two at the C terminus of the NS2B-binding cleft. Two mutations were at the C terminus of the proteinase domain and one was solvent-exposed. The study demonstrated that charged-to-alanine mutagenesis in the viral proteinase can be used to produce growth-restricted flaviviruses that may be useful in the production of attenuated vaccine strains.


Assuntos
Vírus da Dengue/enzimologia , Endopeptidases/genética , Proteínas não Estruturais Virais/genética , Alanina/metabolismo , Animais , Sítios de Ligação , Células COS , Linhagem Celular , Chlorocebus aethiops , Vírus da Dengue/crescimento & desenvolvimento , Modelos Moleculares , Mutação Puntual , Ligação Proteica , RNA Helicases , Serina Endopeptidases , Proteínas não Estruturais Virais/metabolismo , Ensaio de Placa Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA