Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Commun ; 15(1): 7386, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191772

RESUMO

Germline pathogenic TP53 variants predispose individuals to a high lifetime risk of developing multiple cancers and are the hallmark feature of Li-Fraumeni syndrome (LFS). Our group has previously shown that LFS patients harbor shorter plasma cell-free DNA fragmentation; independent of cancer status. To understand the functional underpinning of cfDNA fragmentation in LFS, we conducted a fragmentomic analysis of 199 cfDNA samples from 82 TP53 mutation carriers and 30 healthy TP53-wildtype controls. We find that LFS individuals exhibit an increased prevalence of A/T nucleotides at fragment ends, dysregulated nucleosome positioning at p53 binding sites, and loci-specific changes in chromatin accessibility at development-associated transcription factor binding sites and at cancer-associated open chromatin regions. Machine learning classification resulted in robust differentiation between TP53 mutant versus wildtype cfDNA samples (AUC-ROC = 0.710-1.000) and intra-patient longitudinal analysis of ctDNA fragmentation signal enabled early cancer detection. These results suggest that cfDNA fragmentation may be a useful diagnostic tool in LFS patients and provides an important baseline for cancer early detection.


Assuntos
Ácidos Nucleicos Livres , Fragmentação do DNA , Mutação em Linhagem Germinativa , Síndrome de Li-Fraumeni , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Masculino , Feminino , Síndrome de Li-Fraumeni/genética , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/sangue , Adulto , Adulto Jovem , Pessoa de Meia-Idade , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Adolescente , Neoplasias/genética , Neoplasias/patologia , Cromatina/genética , Cromatina/metabolismo , Aprendizado de Máquina , Heterozigoto , Criança , Nucleossomos/metabolismo , Nucleossomos/genética , Detecção Precoce de Câncer
2.
Oncogene ; 43(16): 1223-1230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413794

RESUMO

CIC::DUX4 sarcoma (CDS) is a rare but highly aggressive undifferentiated small round cell sarcoma driven by a fusion between the tumor suppressor Capicua (CIC) and DUX4. Currently, there are no effective treatments and efforts to identify and translate better therapies are limited by the scarcity of patient tumor samples and cell lines. To address this limitation, we generated three genetically engineered mouse models of CDS (Ch7CDS, Ai9CDS, and TOPCDS). Remarkably, chimeric mice from all three conditional models developed spontaneous soft tissue tumors and disseminated disease in the absence of Cre-recombinase. The penetrance of spontaneous (Cre-independent) tumor formation was complete irrespective of bi-allelic Cic function and the distance between adjacent loxP sites. Characterization of soft tissue and presumed metastatic tumors showed that they consistently expressed the CIC::DUX4 fusion protein and many downstream markers of the disease credentialing the models as CDS. In addition, tumor-derived cell lines were generated and ChIP-seq was preformed to map fusion-gene specific binding using an N-terminal HA epitope tag. These datasets, along with paired H3K27ac ChIP-sequencing maps, validate CIC::DUX4 as a neomorphic transcriptional activator. Moreover, they are consistent with a model where ETS family transcription factors are cooperative and redundant drivers of the core regulatory circuitry in CDS.


Assuntos
Sarcoma de Células Pequenas , Sarcoma , Neoplasias de Tecidos Moles , Animais , Camundongos , Alelos , Biomarcadores Tumorais , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-ets , Sarcoma/genética , Sarcoma/metabolismo , Sarcoma de Células Pequenas/química , Sarcoma de Células Pequenas/genética , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Humanos
3.
Cancer Res ; 83(23): 3846-3860, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819236

RESUMO

NUT carcinoma (NC) is an aggressive squamous carcinoma defined by the BRD4-NUT fusion oncoprotein. Routinely effective systemic treatments are unavailable for most NC patients. The lack of an adequate animal model precludes identifying and leveraging cell-extrinsic factors therapeutically in NC. Here, we created a genetically engineered mouse model (GEMM) of NC that forms a Brd4::NUTM1 fusion gene upon tamoxifen induction of Sox2-driven Cre. The model displayed complete disease penetrance, with tumors arising from the squamous epithelium weeks after induction and all mice succumbing to the disease shortly thereafter. Closely resembling human NC (hNC), GEMM tumors (mNC) were poorly differentiated squamous carcinomas with high expression of MYC that metastasized to solid organs and regional lymph nodes. Two GEMM-derived cell lines were developed whose transcriptomic and epigenetic landscapes harbored key features of primary GEMM tumors. Importantly, GEMM tumor and cell line transcriptomes co-classified with those of human NC. BRD4-NUT also blocked differentiation and maintained the growth of mNC as in hNC. Mechanistically, GEMM primary tumors and cell lines formed large histone H3K27ac-enriched domains, termed megadomains, that were invariably associated with the expression of key NC-defining proto-oncogenes, Myc and Trp63. Small-molecule BET bromodomain inhibition (BETi) of mNC induced differentiation and growth arrest and prolonged survival of NC GEMMs, as it does in hNC models. Overall, tumor formation in the NC GEMM is definitive evidence that BRD4-NUT alone can potently drive the malignant transformation of squamous progenitor cells into NC. SIGNIFICANCE: The development of an immunocompetent model of NUT carcinoma that closely mimics the human disease provides a valuable global resource for mechanistic and preclinical studies to improve treatment of this incurable disease.


Assuntos
Carcinoma de Células Escamosas , Fatores de Transcrição , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Curr Oncol ; 30(7): 5946-5952, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37503586

RESUMO

ETV6-ABL1 gene fusion is a rare genetic rearrangement in a variety of malignancies, including myeloproliferative neoplasms (MPN), acute lymphoblastic leukemia (ALL), and acute myeloid leukemia (AML). Here, we report the case of a 16-year-old male diagnosed with a MPN, 7 months post-completion of treatment for Burkitt leukaemia. RNA sequencing analysis confirmed the presence of an ETV6-ABL1 fusion transcript, with an intact, in-frame ABL tyrosine-kinase domain. Of note, secondary ETV6-ABL1-rearranged neoplastic diseases have not been reported to date. The patient was started on a tyrosine kinase inhibitor (TKI; imatinib) and, subsequently, underwent a 10/10 matched unrelated haematopoietic stem cell transplant. He is disease-free five years post-transplant. Definitive evidence of the prognostic influence of the ETV6-ABL1 fusion in haematological neoplasms is lacking; however, overall data suggest that it is a poor prognostic factor, particularly in patients with ALL and AML. The presence of this ETV6-ABL1 fusion should be more routinely investigated, especially in patients with a CML-like picture. More routine use of whole-genome and RNA sequencing analyses in clinical diagnostic care, in conjunction with conventional cytogenetics, will facilitate these investigations.


Assuntos
Linfoma de Burkitt , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Masculino , Humanos , Adolescente , Proteínas Tirosina Quinases/genética , Hibridização in Situ Fluorescente , Mesilato de Imatinib/uso terapêutico , Leucemia Mieloide Aguda/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
5.
J Clin Oncol ; 41(4): 766-777, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240479

RESUMO

PURPOSE: Diagnosis of Mismatch Repair Deficiency (MMRD) is crucial for tumor management and early detection in patients with the cancer predisposition syndrome constitutional mismatch repair deficiency (CMMRD). Current diagnostic tools are cumbersome and inconsistent both in childhood cancers and in determining germline MMRD. PATIENTS AND METHODS: We developed and analyzed a functional Low-pass Genomic Instability Characterization (LOGIC) assay to detect MMRD. The diagnostic performance of LOGIC was compared with that of current established assays including tumor mutational burden, immunohistochemistry, and the microsatellite instability panel. LOGIC was then applied to various normal tissues of patients with CMMRD with comprehensive clinical data including age of cancer presentation. RESULTS: Overall, LOGIC was 100% sensitive and specific in detecting MMRD in childhood cancers (N = 376). It was more sensitive than the microsatellite instability panel (14%, P = 4.3 × 10-12), immunohistochemistry (86%, P = 4.6 × 10-3), or tumor mutational burden (80%, P = 9.1 × 10-4). LOGIC was able to distinguish CMMRD from other cancer predisposition syndromes using blood and saliva DNA (P < .0001, n = 277). In normal cells, MMRDness scores differed between tissues (GI > blood > brain), increased over time in the same individual, and revealed genotype-phenotype associations within the mismatch repair genes. Importantly, increased MMRDness score was associated with younger age of first cancer presentation in individuals with CMMRD (P = 2.2 × 10-5). CONCLUSION: LOGIC was a robust tool for the diagnosis of MMRD in multiple cancer types and in normal tissues. LOGIC may inform therapeutic cancer decisions, provide rapid diagnosis of germline MMRD, and support tailored surveillance for individuals with CMMRD.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA/genética , Genômica , Células Germinativas/patologia , Instabilidade de Microssatélites , Repetições de Microssatélites , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética
6.
Nat Cancer ; 4(2): 203-221, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36585449

RESUMO

We conducted integrative somatic-germline analyses by deeply sequencing 864 cancer-associated genes, complete genomes and transcriptomes for 300 mostly previously treated children and adolescents/young adults with cancer of poor prognosis or with rare tumors enrolled in the SickKids Cancer Sequencing (KiCS) program. Clinically actionable variants were identified in 56% of patients. Improved diagnostic accuracy led to modified management in a subset. Therapeutically targetable variants (54% of patients) were of unanticipated timing and type, with over 20% derived from the germline. Corroborating mutational signatures (SBS3/BRCAness) in patients with germline homologous recombination defects demonstrates the potential utility of PARP inhibitors. Mutational burden was significantly elevated in 9% of patients. Sequential sampling identified changes in therapeutically targetable drivers in over one-third of patients, suggesting benefit from rebiopsy for genomic analysis at the time of relapse. Comprehensive cancer genomic profiling is useful at multiple points in the care trajectory for children and adolescents/young adults with cancer, supporting its integration into early clinical management.


Assuntos
Neoplasias , Adulto Jovem , Adolescente , Humanos , Criança , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Genômica , Transcriptoma/genética , Recombinação Homóloga
7.
BMC Med Genomics ; 15(1): 190, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071521

RESUMO

BACKGROUND: Tumor mutation burden (TMB) is a key characteristic used in a tumor-type agnostic context to inform the use of immune checkpoint inhibitors (ICI). Accurate and consistent measurement of TMB is crucial as it can significantly impact patient selection for therapy and clinical trials, with a threshold of 10 mutations/Mb commonly used as an inclusion criterion. Studies have shown that the most significant contributor to variability in mutation counts in whole genome sequence (WGS) data is differences in analysis methods, even more than differences in extraction or library construction methods. Therefore, tools for improving consistency in whole genome TMB estimation are of clinical importance. METHODS: We developed a distributable TMB analysis suite, TMBur, to address the need for genomic TMB estimate consistency in projects that span jurisdictions. TMBur is implemented in Nextflow and performs all analysis steps to generate TMB estimates directly from fastq files, incorporating somatic variant calling with Manta, Strelka2, and Mutect2, and microsatellite instability profiling with MSISensor. These tools are provided in a Singularity container downloaded by the workflow at runtime, allowing the entire workflow to be run identically on most computing platforms. To test the reproducibility of TMBur TMB estimates, we performed replicate runs on WGS data derived from the COLO829 and COLO829BL cell lines at multiple research centres. The clinical value of derived TMB estimates was then evaluated using a cohort of 90 patients with advanced, metastatic cancer that received ICIs following WGS analysis. Patients were split into groups based on a threshold of 10/Mb, and time to progression from initiation of ICIs was examined using Kaplan-Meier and cox-proportional hazards analyses. RESULTS: TMBur produced identical TMB estimates across replicates and at multiple analysis centres. The clinical utility of TMBur-derived TMB estimates were validated, with a genomic TMB ≥ 10/Mb demonstrating improved time to progression, even after correcting for differences in tumor type (HR = 0.39, p = 0.012). CONCLUSIONS: TMBur, a shareable workflow, generates consistent whole genome derived TMB estimates predictive of response to ICIs across multiple analysis centres. Reproducible TMB estimates from this approach can improve collaboration and ensure equitable treatment and clinical trial access spanning jurisdictions.


Assuntos
Biomarcadores Tumorais/genética , Mutação , Neoplasias/genética , Sequenciamento Completo do Genoma/métodos , Humanos , Estimativa de Kaplan-Meier , Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Neoplasias/metabolismo , Neoplasias/terapia , Seleção de Pacientes , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes
8.
J Prim Health Care ; 14(3): 273-279, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36178842

RESUMO

Introduction Diabetes is a leading cause of blindness in New Zealanders, yet a significant proportion of patients with diabetes are not reached by diabetes eye screening. Aim Our study audited patients with diabetes in a large New Zealand rural general practice, to identify addressable barriers preventing patients from attending diabetes eye screening. Methods All patients who had missed a diabetes eye screening appointment at the Dargaville Hospital Eye Screening Clinic between 2018 and 2021 were identified. Demographic information, laboratory and disease status data were recorded and analysed. Semi-structured telephone interviews were undertaken with 66 patients exploring barriers to diabetes eye screening. Descriptive statistical analysis was performed on quantitative data and a thematic analysis on qualitative results. Results One-hundred and fifty-four (27%) of 571 patients invited to screening missed at least one appointment; of these, 66 (43%) were interviewed. Quantitative analysis suggested Maori patients were less likely to be reached, with a 20% higher number of missed appointments than European patients and a higher glycated haemoglobin (HbA1c). Maori patients reported greater barriers to attending eye screening. Common barriers identified by participants were transport, work and family commitments, financial, health and lack of appointment reminders. Discussion Increased barriers for Maori patients could explain the reduced ability of the screening service to reach Maori patients. In order to address inequity and increase overall screening rates, diabetes eye screening and primary care services need to improve the booking system, facilitate transport to screening, engage patients and their whanau and build trust.


Assuntos
Diabetes Mellitus , População Rural , Diabetes Mellitus/diagnóstico , Medicina de Família e Comunidade , Hemoglobinas Glicadas , Humanos , Programas de Rastreamento , Nova Zelândia
9.
Cancer Res ; 81(22): 5625-5637, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34535459

RESUMO

Pediatric papillary thyroid carcinoma (PPTC) is clinically distinct from adult-onset disease. Although there are higher rates of metastasis and recurrence in PPTC, prognosis remains highly favorable. Molecular characterization of PPTC has been lacking. Historically, only 40% to 50% of childhood papillary thyroid carcinoma (PTC) were known to be driven by genomic variants common to adult PTC; oncogenic drivers in the remainder were unknown. This contrasts with approximately 90% of adult PTC driven by a discrete number of variants. In this study, 52 PPTCs underwent candidate gene testing, followed in a subset by whole-exome and transcriptome sequencing. Within these samples, candidate gene testing identified variants in 31 (60%) tumors, while exome and transcriptome sequencing identified oncogenic variants in 19 of 21 (90%) remaining tumors. The latter were enriched for oncogenic fusions, with 11 nonrecurrent fusion transcripts, including two previously undescribed fusions, STRN-RET and TG-PBF. Most fusions were associated with 3' receptor tyrosine kinase (RTK) moieties: RET, MET, ALK, and NTRK3. For advanced (distally metastatic) tumors, a driver variant was described in 91%. Gene expression analysis defined three clusters that demonstrated distinct expression of genes involved in thyroid differentiation and MAPK signaling. Among RET-CCDC6-driven tumors, gene expression in pediatric tumors was distinguishable from that in adults. Collectively, these results show that the genomic landscape of pediatric PTC is different from adult PTC. Moreover, they identify genomic drivers in 98% of PPTCs, predominantly oncogenic fusion transcripts involving RTKs, with a pronounced impact on gene expression. Notably, most advanced tumors were driven by a variant for which targeted systemic therapy exists. SIGNIFICANCE: This study highlights important distinctions between the genomes and transcriptomes of pediatric and adult papillary thyroid carcinoma, with implications for understanding the biology, diagnosis, and treatment of advanced disease in children.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Fusão Oncogênica , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Transcriptoma , Adolescente , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Prognóstico , Estudos Prospectivos , Taxa de Sobrevida , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética
10.
JCO Precis Oncol ; 5: 1339-1347, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34994635

RESUMO

The implementation of precision medicine and next-generation sequencing technologies in the field of oncology is a novel approach being more widely studied and used in cases of high-risk primary and recurrent malignancies. Leukemias are the second most common cause of cancer-related mortality in children and the sixth most in adults. Relapsed leukemia represents a major component of the population that may benefit from genomic sequencing. However, ethical and analytic challenges arise when considering sequencing of biologic samples obtained from patients with relapsed leukemia following allogeneic hematopoietic stem-cell transplantation. Blood from the recipient after transplantation would include donor-derived cells and thus, genomic sequencing of recipient blood will interrogate the donor germline in addition to the somatic genetic profile of the leukemia cells and the recipient germline. This is a situation for which the donor will not have typically provided consent and may be particularly problematic if actionable secondary or incidental findings related to the donor are uncovered. We present the challenges raised in this scenario and provide strategies to mitigate this risk.


Assuntos
DNA de Neoplasias/análise , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/cirurgia , Transplante de Células-Tronco Hematopoéticas , Leucemia/genética , Leucemia/cirurgia , Análise de Sequência de DNA/ética , Adolescente , Adulto , Criança , Feminino , Genoma , Humanos , Masculino , Recidiva , Transplante Homólogo
13.
Cancer Discov ; 11(5): 1176-1191, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33355208

RESUMO

Although replication repair deficiency, either by mismatch repair deficiency (MMRD) and/or loss of DNA polymerase proofreading, can cause hypermutation in cancer, microsatellite instability (MSI) is considered a hallmark of MMRD alone. By genome-wide analysis of tumors with germline and somatic deficiencies in replication repair, we reveal a novel association between loss of polymerase proofreading and MSI, especially when both components are lost. Analysis of indels in microsatellites (MS-indels) identified five distinct signatures (MS-sigs). MMRD MS-sigs are dominated by multibase losses, whereas mutant-polymerase MS-sigs contain primarily single-base gains. MS deletions in MMRD tumors depend on the original size of the MS and converge to a preferred length, providing mechanistic insight. Finally, we demonstrate that MS-sigs can be a powerful clinical tool for managing individuals with germline MMRD and replication repair-deficient cancers, as they can detect the replication repair deficiency in normal cells and predict their response to immunotherapy. SIGNIFICANCE: Exome- and genome-wide MSI analysis reveals novel signatures that are uniquely attributed to mismatch repair and DNA polymerase. This provides new mechanistic insight into MS maintenance and can be applied clinically for diagnosis of replication repair deficiency and immunotherapy response prediction.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Transformação Celular Neoplásica , Reparo de Erro de Pareamento de DNA , DNA Polimerase Dirigida por DNA , Regulação Neoplásica da Expressão Gênica , Instabilidade de Microssatélites , Neoplasias/genética , Humanos , Sequenciamento do Exoma
14.
Cancer Genet ; 248-249: 31-33, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32992102

RESUMO

Infant acute lymphoblastic leukemia (ALL) comprises 2.5%-5% of pediatric ALL with inferior survival compared to older children. A majority of infants (80%) with ALL harbor KMT2A gene rearrangement, which portends a poor prognosis. Approximately 94 different partner genes have been identified to date. The common rearrangements include t(4;11)(q21;q23)KMT2A-AFF1,t(11;19) (q23;p13.3)KMT2A-MLLT1 and t(9;11)(p22;q23)KMT2A-MLLT3. We report a novel translocation t(5;11)(q35;q23)KMT2A-MAML1 in newly diagnosed infant precursor B-ALL. Long-term follow-up and a larger number of patients are needed to better understand its prognostic significance.


Assuntos
Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 5/genética , Proteínas de Ligação a DNA/genética , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Fatores de Transcrição/genética , Translocação Genética , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Prognóstico
15.
Nat Genet ; 52(2): 146-159, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32060489

RESUMO

In many repeat diseases, such as Huntington's disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSß. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Naftiridinas/farmacologia , Quinolonas/farmacologia , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos , Animais , Corpo Estriado/efeitos dos fármacos , DNA/metabolismo , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Instabilidade de Microssatélites , Mutação , Ribonucleases/metabolismo , Proteína de Ligação a TATA-Box/genética , Transcrição Gênica
16.
J Pediatr Hematol Oncol ; 41(5): 388-391, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31094905

RESUMO

Congenital neuroblastoma with placental involvement is exceptionally rare, but mortality is high. Detailed examination of placenta including MYCN amplification and segmental chromosomal aberrations should be performed in all suspected cases, as it is noninvasive and readily available. Maternal dissemination has not been reported. In this manuscript, we describe an infant with placental diagnosis of MYCN nonamplified congenital neuroblastoma. This is the first report of a recurrence of congenital 4S neuroblastoma following resolution in which MYCN amplification is only detected in the recurrence. Germline sequencing using a large comprehensive cancer panel did not reveal variants in candidate cancer predisposition genes.


Assuntos
Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Adulto , Aberrações Cromossômicas , Feminino , Amplificação de Genes , Humanos , Lactente , Neuroblastoma/congênito , Neuroblastoma/patologia , Doenças Placentárias , Gravidez , Recidiva
17.
J Child Neurol ; 34(3): 132-138, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30514132

RESUMO

Hemimegalencephaly is a hamartomatous malformation of one hemisphere. Functional hemispherectomy, the definitive treatment, is associated with significant morbidity and mortality in early infancy. Dysregulation of the mTOR pathway can result in malformations of cortical development, and mTOR inhibitors can effectively reduce seizures in tuberous sclerosis complex. We report a 6-day-old female with hemimegalencephaly and frequent seizures despite 9 antiseizure medications. At 3 months of age, while awaiting hemispherectomy, an mTOR inhibitor, rapamycin, was initiated by the neurologist. After 1 week of treatment, there was >50% reduction in seizures and total seizure burden, and after 2 weeks, development improved, resulting in deferral of surgery by 2.5 months with an increased body weight. Pathology demonstrated cortical dysplasia with upregulation of the mTOR pathway. Deep-sequencing of brain tissue demonstrated 16% mosaicism for a pathogenic de novo MTOR gene mutation. This case exemplifies how mTOR inhibitors could be considered for seizure reduction in patients with hemimegalencephaly while awaiting surgery.


Assuntos
Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/etiologia , Hemimegalencefalia/complicações , Serina-Treonina Quinases TOR/uso terapêutico , Anticonvulsivantes/uso terapêutico , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/genética , Feminino , Hemimegalencefalia/diagnóstico por imagem , Hemimegalencefalia/tratamento farmacológico , Hemimegalencefalia/genética , Humanos , Lactente , Convulsões/diagnóstico por imagem , Convulsões/tratamento farmacológico , Convulsões/etiologia , Convulsões/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética
18.
Science ; 361(6405)2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30166462

RESUMO

Sarcomas are cancers of the bone and soft tissue often defined by gene fusions. Ewing sarcoma involves fusions between EWSR1, a gene encoding an RNA binding protein, and E26 transformation-specific (ETS) transcription factors. We explored how and when EWSR1-ETS fusions arise by studying the whole genomes of Ewing sarcomas. In 52 of 124 (42%) of tumors, the fusion gene arises by a sudden burst of complex, loop-like rearrangements, a process called chromoplexy, rather than by simple reciprocal translocations. These loops always contained the disease-defining fusion at the center, but they disrupted multiple additional genes. The loops occurred preferentially in early replicating and transcriptionally active genomic regions. Similar loops forming canonical fusions were found in three other sarcoma types. Chromoplexy-generated fusions appear to be associated with an aggressive form of Ewing sarcoma. These loops arise early, giving rise to both primary and relapse Ewing sarcoma tumors, which can continue to evolve in parallel.


Assuntos
Neoplasias Ósseas/genética , Rearranjo Gênico , Proteínas de Fusão Oncogênica/genética , Sarcoma de Ewing/genética , Neoplasias de Tecidos Moles/genética , Adolescente , Neoplasias Ósseas/patologia , Criança , Replicação do DNA , Evolução Molecular , Feminino , Genoma Humano , Humanos , Masculino , Mutação , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias de Tecidos Moles/patologia
19.
Cancer Immunol Res ; 6(9): 1001-1007, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30018044

RESUMO

Alveolar soft-part sarcoma (ASPS) is a morphologically distinctive mesenchymal tumor characterized by a canonical ASPL-TFE3 fusion product. In the metastatic setting, standard cytotoxic chemotherapies are typically ineffective. Studies have suggested modest clinical response to multitargeted receptor tyrosine kinase inhibitors. Here, we report sustained partial responses in two patients with immune checkpoint inhibition treated with either durvalumab (anti-PD-L1) alone or in combination with tremelimumab (anti-CTLA-4), which appeared unrelated to tumor immune infiltrates or mutational burden. Genomic analysis of these patients, and other cases of ASPS, demonstrated molecular mismatch-repair deficiency signatures. These findings suggest that immune checkpoint blockade may be a useful therapeutic strategy for ASPS. Cancer Immunol Res; 6(9); 1001-7. ©2018 AACR.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Sarcoma Alveolar de Partes Moles/tratamento farmacológico , Adulto , Anticorpos Monoclonais Humanizados , Quimioterapia Combinada , Feminino , Humanos , Sarcoma Alveolar de Partes Moles/genética , Transcriptoma , Resultado do Tratamento , Adulto Jovem
20.
Pediatr Hematol Oncol ; 35(7-8): 407-414, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30806137

RESUMO

Rhabdomyosarcoma (RMS) represents the most common soft tissue sarcoma in the pediatric age group. While RMS has been traditionally classified on the basis of its histological appearance (with embryonal and alveolar being most common), it is now clear that the PAX-FOXO1 fusion product drives prognosis. We report here a case of pelvic embryonal RMS in a 3-month-old male who was subsequently found to have developed brain metastases during the course of chemotherapy. Cytogenetic analysis of the brain metastases at the time of autopsy as well as next-generation sequencing analysis revealed a reciprocal translocation involving the SH3 domain containing ring finger 3 gene (SH3RF3, on chromosome 2q13) and the Lipase C gene (LIPC, on chromosome 15q21.3). Due to the poor quality of the pretreatment and postresection samples, cytogenetics and NGS analysis looking for the presence of this balanced translocation in these specimens could not be performed. To the authors' knowledge, this translocation has never been described in RMS. Further studies are needed to determine the biological and clinical implications of this novel translocation.


Assuntos
Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 2/genética , Rabdomiossarcoma Embrionário/genética , Translocação Genética , Proteína Forkhead Box O1/genética , Humanos , Lactente , Lipase/genética , Masculino , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/genética , Rabdomiossarcoma Embrionário/patologia , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA