Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Med Chem ; 66(22): 15115-15140, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37943012

RESUMO

F1FO-ATP synthase is the mitochondrial complex responsible for ATP production. During myocardial ischemia, it reverses its activity, hydrolyzing ATP and leading to energetic deficit and cardiac injury. We aimed to discover novel inhibitors of ATP hydrolysis, accessing the druggability of the target within ischemia(I)/reperfusion(R) injury. New molecular scaffolds were revealed using ligand-based virtual screening methods. Fifty-five compounds were tested on isolated murine heart mitochondria and H9c2 cells for their inhibitory activity. A pyrazolo[3,4-c]pyridine hit structure was identified and optimized in a hit-to-lead process synthesizing nine novel derivatives. Three derivatives significantly inhibited ATP hydrolysis in vitro, while in vivo, they reduced myocardial infarct size (IS). The novel compound 31 was the most effective in reducing IS, validating that inhibition of F1FO-ATP hydrolytic activity can serve as a target for cardioprotection during ischemia. Further examination of signaling pathways revealed that the cardioprotection mechanism is related to the increased ATP content in the ischemic myocardium and increased phosphorylation of PKA and phospholamban, leading to the reduction of apoptosis.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Hidrólise , Trifosfato de Adenosina/metabolismo , Mitocôndrias Cardíacas/metabolismo
2.
Redox Biol ; 67: 102894, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37839355

RESUMO

The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Espécies Reativas de Oxigênio/metabolismo , Miocárdio/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Oxirredução
3.
Nature ; 618(7963): 159-168, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225977

RESUMO

Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development1-5. This also applies to the PI3K signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report the discovery of UCL-TRO-1938 (referred to as 1938 hereon), a small-molecule activator of the PI3Kα isoform, a crucial effector of growth factor signalling. 1938 allosterically activates PI3Kα through a distinct mechanism by enhancing multiple steps of the PI3Kα catalytic cycle and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia-reperfusion injury and, after local administration, enhances nerve regeneration following nerve crush. This study identifies a chemical tool to directly probe the PI3Kα signalling pathway and a new approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.


Assuntos
Regeneração Nervosa , Humanos , Neoplasias/tratamento farmacológico , Regeneração Nervosa/efeitos dos fármacos , Isoformas de Proteínas/agonistas , Transdução de Sinais/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/química , Classe I de Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Cardiotônicos/farmacologia , Animais , Biocatálise/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Compressão Nervosa , Proliferação de Células/efeitos dos fármacos
4.
Eur Heart J ; 44(2): 100-112, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36337034

RESUMO

The use of biomarkers is undisputed in the diagnosis of primary myocardial infarction (MI), but their value for identifying MI is less well studied in the postoperative phase following coronary artery bypass grafting (CABG). To identify patients with periprocedural MI (PMI), several conflicting definitions of PMI have been proposed, relying either on cardiac troponin (cTn) or the MB isoenzyme of creatine kinase, with or without supporting evidence of ischaemia. However, CABG inherently induces the release of cardiac biomarkers, as reflected by significant cTn concentrations in patients with uncomplicated postoperative courses. Still, the underlying (patho)physiological release mechanisms of cTn are incompletely understood, complicating adequate interpretation of postoperative increases in cTn concentrations. Therefore, the aim of the current review is to present these potential underlying mechanisms of cTn release in general, and following CABG in particular (Graphical Abstract). Based on these mechanisms, dissimilarities in the release of cTnI and cTnT are discussed, with potentially important implications for clinical practice. Consequently, currently proposed cTn biomarker cut-offs by the prevailing definitions of PMI might warrant re-assessment, with differentiation in cut-offs for the separate available assays and surgical strategies. To resolve these issues, future prospective studies are warranted to determine the prognostic influence of biomarker release in general and PMI in particular.


Assuntos
Ponte de Artéria Coronária , Infarto do Miocárdio , Humanos , Ponte de Artéria Coronária/efeitos adversos , Infarto do Miocárdio/etiologia , Troponina I , Troponina T , Biomarcadores
6.
Cardiovasc Res ; 117(10): 2161-2174, 2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-34114614

RESUMO

We review some of the important discoveries and advances made in basic and translational cardiac research in 2020. For example, in the field of myocardial infarction (MI), new aspects of autophagy and the importance of eosinophils were described. Novel approaches, such as a glycocalyx mimetic, were used to improve cardiac recovery following MI. The strategy of 3D bio-printing was shown to allow the fabrication of a chambered cardiac organoid. The benefit of combining tissue engineering with paracrine therapy to heal injured myocardium is discussed. We highlight the importance of cell-to-cell communication, in particular, the relevance of extracellular vesicles, such as exosomes, which transport proteins, lipids, non-coding RNAs, and mRNAs and actively contribute to angiogenesis and myocardial regeneration. In this rapidly growing field, new strategies were developed to stimulate the release of reparative exosomes in ischaemic myocardium. Single-cell sequencing technology is causing a revolution in the study of transcriptional expression at cellular resolution, revealing unanticipated heterogeneity within cardiomyocytes, pericytes and fibroblasts, and revealing a unique subpopulation of cardiac fibroblasts. Several studies demonstrated that exosome- and non-coding RNA-mediated approaches can enhance human induced pluripotent stem cell (iPSC) viability and differentiation into mature cardiomyocytes. Important details of the mitochondrial Ca2+ uniporter and its relevance were elucidated. Novel aspects of cancer therapeutic-induced cardiotoxicity were described, such as the novel circular RNA circITCH, which may lead to novel treatments. Finally, we provide some insights into the effects of SARS-CoV-2 on the heart.


Assuntos
Pesquisa Biomédica , Cardiologia , Proliferação de Células , Insuficiência Cardíaca/patologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Regeneração , Animais , COVID-19/patologia , COVID-19/virologia , Comunicação Celular , Microambiente Celular , Exossomos/metabolismo , Exossomos/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/virologia , Fenótipo , RNA não Traduzido/metabolismo , SARS-CoV-2/patogenicidade
7.
Cytotherapy ; 23(5): 373-380, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33934807

RESUMO

Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50-200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex "work-in-progress" MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.


Assuntos
Vesículas Extracelulares , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , Humanos , Estudos Prospectivos
8.
Basic Res Cardiol ; 116(1): 12, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33629195

RESUMO

The benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19 pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel therapies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release via a reduction in nuclear factor kappa beta (NF-κB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group, cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective surgery are the most suitable clinical conditions in which to test this hypothesis.


Assuntos
Citocinas/fisiologia , Imunidade Inata , Inflamação/terapia , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , COVID-19/complicações , Sobrevivência Celular , Vesículas Extracelulares/fisiologia , Humanos , Imunidade Humoral , Inflamação/sangue , Traumatismo por Reperfusão Miocárdica/imunologia
9.
Basic Res Cardiol ; 115(3): 26, 2020 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-32146560

RESUMO

Mesenchymal stromal cells (MSCs) exhibit antiapoptotic and proangiogenic functions in models of myocardial infarction which may be mediated by secreted small extracellular vesicles (sEVs). However, MSCs have frequently been harvested from aged or diseased patients, while the isolated sEVs often contain high levels of impurities. Here, we studied the cardioprotective and proangiogenic activities of size-exclusion chromatography-purified sEVs secreted from human foetal amniotic fluid stem cells (SS-hAFSCs), possessing superior functional potential to that of adult MSCs. We demonstrated for the first time that highly pure (up to 1.7 × 1010 particles/µg protein) and thoroughly characterised SS-hAFSC sEVs protect rat hearts from ischaemia-reperfusion injury in vivo when administered intravenously prior to reperfusion (38 ± 9% infarct size reduction, p < 0.05). SS-hAFSC sEVs did not protect isolated primary cardiomyocytes in models of simulated ischaemia-reperfusion injury in vitro, indicative of indirect cardioprotective effects. SS-hAFSC sEVs were not proangiogenic in vitro, although they markedly stimulated endothelial cell migration. Additionally, sEVs were entirely responsible for the promigratory effects of the medium conditioned by SS-hAFSC. Mechanistically, sEV-induced chemotaxis involved phosphatidylinositol 3-kinase (PI3K) signalling, as its pharmacological inhibition in treated endothelial cells reduced migration by 54 ± 7% (p < 0.001). Together, these data indicate that SS-hAFSC sEVs have multifactorial beneficial effects in a myocardial infarction setting.


Assuntos
Líquido Amniótico/citologia , Cardiotônicos/metabolismo , Movimento Celular , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Quimiotaxia , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Ratos , Traumatismo por Reperfusão/patologia
10.
J Cell Mol Med ; 24(8): 4871-4876, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32101370

RESUMO

Small extracellular vesicles (EVs) are novel players in vascular biology. However, a thorough understanding of their production and function remains elusive. Endothelial senescence is a key feature of vascular ageing and thus, is an attractive therapeutic target for the treatment of vascular disease. In this study, we sought to characterize the EV production of senescent endothelial cells. To achieve this, Human Umbilical Vascular Endothelial Cells (HUVECs) were replicated until they reached senescence, as determined by measurement of Senescence-Associated ß-Galactosidase activity via microscopy and flow cytometry. Expression of the endosomal marker Rab7 and the EV marker CD63 was determined by immunofluorescence. Small EVs were isolated by ultracentrifugation and characterized using electron microscopy, nanoparticle tracking analysis and immunoassays to assess morphology, size, concentration and expression of exosome markers CD9 and CD81. Migration of HUVECs in response to EVs was studied using a transwell assay. The results showed that senescent endothelial cells express higher levels of Rab7 and CD63. Moreover, senescent endothelial cells produced higher levels of CD9- and CD81-positive EVs. Additionally, small EVs from both young and senescent endothelial cells promoted HUVEC migration. Overall, senescent endothelial cells produce an increased number of functional small EVs, which may have a role in vascular physiology and disease.


Assuntos
Senescência Celular/genética , Células Endoteliais/metabolismo , Exossomos/genética , Vesículas Extracelulares/genética , Biomarcadores/metabolismo , Células Endoteliais/citologia , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana , Humanos , Tetraspanina 29/genética , Tetraspanina 30/genética , beta-Galactosidase/genética , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
11.
Cardiovasc Drugs Ther ; 33(6): 661-667, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31721014

RESUMO

PURPOSE: A substantial number of ischaemic stroke patients who receive reperfusion therapy in the acute phase do not ever fully recover. This reveals the urgent need to develop new adjunctive neuroprotective treatment strategies alongside reperfusion therapy. Previous experimental studies demonstrated the potential of glucagon-like peptide-1 (GLP-1) to reduce acute ischaemic damage in the brain. Here, we examined the neuroprotective effects of two GLP-1 analogues, liraglutide and semaglutide. METHODS: A non-diabetic rat model of acute ischaemic stroke involved 90, 120 or 180 min of middle cerebral artery occlusion (MCAO). Liraglutide or semaglutide was administered either i.v. at the onset of reperfusion or s.c. 5 min before the onset of reperfusion. Infarct size and functional status were evaluated after 24 h or 72 h of reperfusion. RESULTS: Liraglutide, administered as a bolus at the onset of reperfusion, reduced infarct size by up to 90% and improved neuroscore at 24 h in a dose-dependent manner, following 90-min, but not 120-min or 180-min ischaemia. Semaglutide and liraglutide administered s.c. reduced infarct size by 63% and 48%, respectively, and improved neuroscore at 72 h following 90-min MCAO. Neuroprotection by semaglutide was abolished by GLP1-R antagonist exendin(9-39). CONCLUSION: Infarct-limiting and functional neuroprotective effects of liraglutide are dose-dependent. Neuroprotection by semaglutide is at least as strong as by liraglutide and is mediated by GLP-1Rs.


Assuntos
Encéfalo/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peptídeos Semelhantes ao Glucagon/farmacologia , Incretinas/farmacologia , Infarto da Artéria Cerebral Média/terapia , Liraglutida/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Reperfusão/efeitos adversos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Ratos Sprague-Dawley , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fatores de Tempo
12.
Cell Calcium ; 84: 102100, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31639649

RESUMO

Despite reported sightings over many years, certain mitochondrial-specific channels have proven to be elusive beasts, evading molecular identification. However, combining modern genetics with a wave of their ion-sensing wand, researchers have managed to capture first the mitochondrial calcium uniporter, and now that semi-mythological beast, the mitochondrial ATP-sensitive potassium (mitoKATP) channel.


Assuntos
Canais KATP/metabolismo , Mitocôndrias/metabolismo , Potássio/metabolismo , Traumatismo por Reperfusão/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Canais KATP/genética , Bloqueadores dos Canais de Potássio/farmacologia
13.
Cardiovasc Res ; 115(3): 488-500, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657875

RESUMO

Morbidity and mortality from ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and are increasing worldwide. Patients with IHD or HF might benefit from novel therapeutic strategies, such as cell-based therapies. We recently discussed the therapeutic potential of cell-based therapies and provided recommendations on how to improve the therapeutic translation of these novel strategies for effective cardiac regeneration and repair. Despite major advances in optimizing these strategies with respect to cell source and delivery method, the clinical outcome of cell-based therapy remains unsatisfactory. Major obstacles are the low engraftment and survival rate of transplanted cells in the harmful microenvironment of the host tissue, and the paucity or even lack of endogenous cells with repair capacity. Therefore, new ways of delivering cells and their derivatives are required in order to empower cell-based cardiac repair and regeneration in patients with IHD or HF. Strategies using tissue engineering (TE) combine cells with matrix materials to enhance cell retention or cell delivery in the transplanted area, and have recently received much attention for this purpose. Here, we summarize knowledge on novel approaches emerging from the TE scenario. In particular, we will discuss how combinations of cell/bio-materials (e.g. hydrogels, cell sheets, prefabricated matrices, microspheres, and injectable matrices) combinations might enhance cell retention or cell delivery in the transplantation areas, thereby increase the success rate of cell therapies for IHD and HF. We will not focus on the use of classical engineering approaches, employing fully synthetic materials, because of their unsatisfactory material properties which render them not clinically applicable. The overall aim of this Position Paper from the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to proceed in research with these novel TE strategies combined with cell-based therapies to boost cardiac repair in the clinical settings of IHD and HF.


Assuntos
Pesquisa Biomédica/normas , Cardiologia/normas , Insuficiência Cardíaca/cirurgia , Isquemia Miocárdica/cirurgia , Miocárdio/patologia , Regeneração , Transplante de Células-Tronco/normas , Engenharia Tecidual/normas , Consenso , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Recuperação de Função Fisiológica , Transplante de Células-Tronco/efeitos adversos , Resultado do Tratamento
15.
Basic Res Cardiol ; 113(6): 43, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310998

RESUMO

Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury.


Assuntos
Cardiologia , Oncologia , Infarto do Miocárdio , Acidente Vascular Cerebral , Animais , Antineoplásicos/efeitos adversos , Cardiologia/métodos , Cardiologia/tendências , Citoproteção , Humanos , Precondicionamento Isquêmico Miocárdico/métodos , Oncologia/métodos , Oncologia/tendências , Traumatismo por Reperfusão Miocárdica/prevenção & controle
16.
Cell Rep ; 24(3): 630-641, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021161

RESUMO

The immunosuppressive transmembrane protein PD-L1 was shown to traffic via the multivesicular body (MVB) and to be released on exosomes. A high-content siRNA screen identified the endosomal sorting complexes required for transport (ESCRT)-associated protein ALIX as a regulator of both EGFR activity and PD-L1 surface presentation in basal-like breast cancer (BLBC) cells. ALIX depletion results in prolonged and enhanced stimulation-induced EGFR activity as well as defective PD-L1 trafficking through the MVB, reduced exosomal secretion, and its redistribution to the cell surface. Increased surface PD-L1 expression confers an EGFR-dependent immunosuppressive phenotype on ALIX-depleted cells. An inverse association between ALIX and PD-L1 expression was observed in human breast cancer tissues, while an immunocompetent mouse model of breast cancer revealed that ALIX-deficient tumors are larger and show an increased immunosuppressive environment. Our data suggest that ALIX modulates immunosuppression through regulation of PD-L1 and EGFR and may, therefore, present a diagnostic and therapeutic target for BLBC.


Assuntos
Antígeno B7-H1/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Receptores ErbB/metabolismo , Terapia de Imunossupressão , Animais , Técnicas Biossensoriais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Microambiente Celular , Exossomos/metabolismo , Exossomos/ultraestrutura , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Camundongos Endogâmicos BALB C
17.
Basic Res Cardiol ; 113(4): 25, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858664

RESUMO

Remote ischaemic conditioning (RIC) is a promising method of cardioprotection, with numerous clinical studies having demonstrated its ability to reduce myocardial infarct size and improve prognosis. On the other hand, there are several clinical trials, in particular those conducted in the setting of elective cardiac surgery, that have failed to show any benefit of RIC. These contradictory data indicate that there is insufficient understanding of the mechanisms underlying RIC. RIC is now known to signal indiscriminately, protecting not only the heart, but also other organs. In particular, experimental studies have demonstrated that it is able to reduce infarct size in an acute ischaemic stroke model. However, the mechanisms underlying RIC-induced neuroprotection are even less well understood than for cardioprotection. The existence of bidirectional feedback interactions between the heart and the brain suggests that the mechanisms of RIC-induced neuroprotection and cardioprotection should be studied as a whole. This review, therefore, addresses the topic of the neural component of the RIC mechanism.


Assuntos
Encéfalo/metabolismo , Transtornos Cerebrovasculares/prevenção & controle , Precondicionamento Isquêmico Miocárdico , Precondicionamento Isquêmico/métodos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Vias Neurais/metabolismo , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/patologia , Transtornos Cerebrovasculares/fisiopatologia , Retroalimentação Fisiológica , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Transdução de Sinais
18.
Cardiovasc Drugs Ther ; 32(3): 245-253, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29766336

RESUMO

PURPOSE: Anthracyclines cause chronic irreversible cardiac failure, but the mechanism remains poorly understood. Emerging data indicate that cardiac damage begins early, suggesting protective modalities delivered in the acute stage may confer prolonged benefit. Ischaemic preconditioning (IPC) activates the pro-survival reperfusion injury salvage kinase (RISK) pathway which involves PI3-kinase and MAPK/ERK1/2. METHODS: We investigated whether simulated IPC (sIPC), in the form of a sublethal exposure to a hypoxic buffer simulating ischaemic conditions followed by reoxygenation, protects primary adult rat cardiomyocytes against anthracycline-induced injury. PI3-kinase and MAPK/ERK1/2 were inhibited using LY294002, and PD98059. The role of reactive oxygen species (ROS), mitochondrial membrane potential (Δψm) and mitochondrial permeability transition pore (mPTP) were also investigated in doxorubicin-treated cells. We further examined whether sIPC protected HeLa cancer cells from doxorubicin-induced death. RESULTS: sIPC protected cardiomyocytes against doxorubicin-induced death (35.4 ± 1.7% doxorubicin vs 14.7 ± 1.5% doxorubicin + sIPC; p < 0.01). This protection was abrogated by the PI3-kinase inhibitor, LY294002, but not the MAPK/ERK1/2 inhibitor, PD98059. A ROS scavenger failed to rescue cardiomyocytes from doxorubicin toxicity, and no significant influence on Δψm or mPTP opening was identified after subjecting cells to a doxorubicin insult. Importantly, sIPC did not protect HeLa cancer cells from doxorubicin-induced death. CONCLUSION: sIPC is able to protect cardiomyocytes against anthracycline injury via a pathway involving PI3-kinase. This mechanism appears to be independent of ROS, changes to Δψm, and mPTP. Further investigation of the mechanism of sIPC-induced protection against anthracycline-injury is warranted.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Cardiopatias/prevenção & controle , Precondicionamento Isquêmico Miocárdico , Miócitos Cardíacos/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Animais , Cardiotoxicidade , Hipóxia Celular , Feminino , Células HeLa , Cardiopatias/induzido quimicamente , Cardiopatias/enzimologia , Cardiopatias/patologia , Humanos , Masculino , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/enzimologia , Neoplasias do Colo do Útero/patologia
19.
Cardiovasc Drugs Ther ; 32(2): 165-168, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29582211

RESUMO

PURPOSE: Protecting the heart from ischaemia-reperfusion (IR) injury is a major goal in patients presenting with an acute myocardial infarction. Pyroptosis is a novel form of cell death in which caspase 1 is activated and cleaves interleukin 1ß. VX-785 is a highly selective, prodrug caspase 1 inhibitor that is also clinically available. It has been shown to be protective against acute IR in vivo rat model, and therefore might be a promising possibility for future cardioprotective therapy. However, it is not known whether protection by VX-765 involves the reperfusion injury salvage kinase (RISK) pathway. We therefore investigated whether VX-765 protects the isolated, perfused rat heart via the PI3K/Akt pathway and whether protection was additive with ischaemic preconditioning (IPC). METHODS: Langendorff-perfused rat hearts were subject to ischaemia and reperfusion injury in the presence of 30 µM VX-765, with precedent IPC, or the combination of VX-765 and IPC. RESULTS: VX-765 reduced infarct size (28 vs 48% control; P < 0.05) to a similar extent as IPC (30%; P < 0.05). The PI3 kinase inhibitor, wortmannin, abolished the protective effect of VX-765. Importantly in the model used, we were unable to show additive protection with VX-765 + IPC. CONCLUSIONS: The caspase 1 inhibitor, VX-765, was able to reduce myocardial infarction in a model of IR injury. However, the addition of IPC did not demonstrate any further protection.


Assuntos
Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Dipeptídeos/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , para-Aminobenzoatos/farmacologia , Animais , Citoproteção , Modelos Animais de Doenças , Preparação de Coração Isolado , Masculino , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Piroptose/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
20.
Cardiovasc Res ; 114(3): 358-367, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040423

RESUMO

Heart failure is rapidly increasing in prevalence and will redraw the global landscape for cardiovascular health. Alleviating and repairing cardiac injury associated with myocardial infarction (MI) is key to improving this burden. Homing signals mobilize and recruit stem cells to the ischaemic myocardium where they exert beneficial paracrine effects. The chemoattractant cytokine SDF-1α and its associated receptor CXCR4 are upregulated after MI and appear to be important in this context. Activation of CXCR4 promotes both cardiomyocyte survival and stem cell migration towards the infarcted myocardium. These effects have beneficial effects on infarct size, and left ventricular remodelling and function. However, the timing of endogenous SDF-1α release and CXCR4 upregulation may not be optimal. Furthermore, current ELISA-based assays cannot distinguish between active SDF-1α, and SDF-1α inactivated by dipeptidyl peptidase 4 (DPP4). Current therapeutic approaches aim to recruit the SDF-1α-CXCR4 pathway or prolong SDF-1α life-time by preventing its cleavage by DPP4. This review assesses the evidence supporting these approaches and proposes SDF-1α as an important confounder in recent studies of DPP4 inhibitors.


Assuntos
Cardiomiopatias/tratamento farmacológico , Quimiocina CXCL12/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Isquemia Miocárdica/complicações , Miocárdio/metabolismo , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Quimiocina CXCL12/metabolismo , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Meia-Vida , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Miocárdio/patologia , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA