Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1201007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680900

RESUMO

Introduction: Excessive alcohol consumption leads to a myriad of detrimental health effects, including alcohol-associated liver disease (ALD). Unfortunately, no available treatments exist to combat the progression of ALD beyond corticosteroid administration and/or liver transplants. Dihydromyricetin (DHM) is a bioactive polyphenol and flavonoid that has traditionally been used in Chinese herbal medicine for its robust antioxidant and anti-inflammatory properties. It is derived from many plants, including Hovenia dulcis and is found as the active ingredient in a variety of popular hangover remedies. Investigations utilizing DHM have demonstrated its ability to alleviate ethanol-induced disruptions in mitochondrial and lipid metabolism, while demonstrating hepatoprotective activity. Methods: Female c57BL/6J mice (n = 12/group) were treated using the Lieber DeCarli forced-drinking and ethanol (EtOH) containing liquid diet, for 5 weeks. Mice were randomly divided into three groups: (1) No-EtOH, (2) EtOH [5% (v/v)], and (3) EtOH [5% (v/v)] + DHM (6 mg/mL). Mice were exposed to ethanol for 2 weeks to ensure the development of ALD pathology prior to receiving dihydromyricetin supplementation. Statistical analysis included one-way ANOVA along with Bonferroni multiple comparison tests, where p ≤ 0.05 was considered statistically significant. Results: Dihydromyricetin administration significantly improved aminotransferase levels (AST/ALT) and reduced levels of circulating lipids including LDL/VLDL, total cholesterol (free cholesterol), and triglycerides. DHM demonstrated enhanced lipid clearance by way of increased lipophagy activity, shown as the increased interaction and colocalization of p62/SQSTM-1, LC3B, and PLIN-1 proteins. DHM-fed mice had increased hepatocyte-to-hepatocyte lipid droplet (LD) heterogeneity, suggesting increased neutralization and sequestration of free lipids into LDs. DHM administration significantly reduced prominent pro-inflammatory cytokines commonly associated with ALD pathology such as TNF-α, IL-6, and IL-17. Discussion: Dihydromyricetin is commercially available as a dietary supplement. The results of this proof-of-concept study demonstrate its potential utility and functionality as a cost-effective and safe candidate to combat inflammation and the progression of ALD pathology.

2.
Leukemia ; 36(1): 248-256, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34285343

RESUMO

Recent evidence indicates that extracellular adenosine triphosphate (eATP), as a major mediator of purinergic signaling, plays an important role in regulating the mobilization and homing of hematopoietic stem progenitor cells (HSPCs). In our previous work we demonstrated that eATP activates the P2X7 ion channel receptor in HSPCs and that its deficiency impairs stem cell trafficking. To learn more about the role of the P2X purinergic receptor family in hematopoiesis, we phenotyped murine and human HSPCs with respect to the seven P2X receptors and observed that, these cells also highly express P2X4 receptors, which shows ~50% sequence similarity to P2X7 subtypes, but that P2X4 cells are more sensitive to eATP and signal much more rapidly. Using the selective P2X4 receptor antagonist PSB12054 as well as P2X4-KO mice, we found that the P2X4 receptor, similar to P2X7 receptor, promotes trafficking of HSPCs in that its deficiency leads to impaired chemotaxis of HSPCs in response to a stromal-derived factor 1 (SDF-1) gradient, less effective pharmacological mobilization, and defective homing and engraftment of HSPCs after transplantation into myeloablated hosts. This correlated with a decrease in SDF-1 expression in the BM microenvironment. Overall, our results confirm the proposed cooperative dependence of both receptors in response to eATP signaling. In G-CSF-induced mobilization, a lack of one receptor is not compensated by the presence of the other one, which supports their mutual dependence in regulating HSPC trafficking.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/fisiologia , Receptores Purinérgicos P2X4/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Nicho de Células-Tronco , Animais , Quimiotaxia , Feminino , Fator Estimulador de Colônias de Granulócitos/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Purinérgicos P2X7/genética , Transdução de Sinais
3.
Behav Brain Res ; 393: 112804, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32668263

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease characterized by motor and cognitive deficits, the result of dopamine (DA)-depletion within the basal ganglia. Currently, DA replacement therapy in the form of Sinemet (L-DOPA plus Carbidopa) provides symptomatic motor benefits and remains the "gold standard" for treatment. Several pharmacological approaches can enhance DA neurotransmission including the administration of DA receptor agonists, the inhibition of DA metabolism, and enhancing pre-synaptic DA release. DA neurotransmission is regulated by several receptor subtypes including signaling through the purinergic system. P2 × 4 receptors (P2 × 4Rs) are a class of cation-permeable ligand-gated ion channels activated by the synaptic release of extracellular adenosine 5'-triphosphate (ATP). P2 × 4Rs are expressed throughout the central nervous system including the dopaminergic circuitry of the substantia nigra, basal ganglia, and related reward networks. Previous studies have demonstrated that P2 × 4Rs can modulate several DA-dependent characteristics including motor, cognitive, and reward behaviors. Ivermectin (IVM) and moxidectin (MOX) are two macrocyclic lactones that can potentiate P2 × 4Rs. In this study, we sought to investigate the role of P2 × 4Rs in mediating DA neurotransmission by exploring their impact on DA-dependent behavior, specifically rotation frequency in the unilateral 6-hydroxydopamine-lesioned mouse model of DA-depletion. While we did not observe any differences in the degree of lesioning based on immunostaining for tyrosine hydroxylase between sexes, male mice displayed a greater number of rotations with L-DOPA compared to female mice. In contrast, we observed that IVM plus L-DOPA increased the number of rotations (per 10 min) in female, but not male mice. These findings highlight the potential role of pharmacologically targeting the purinergic receptor system in modulating DA neurotransmission as well as the importance of sex differences impacting outcome measures.


Assuntos
Ivermectina/administração & dosagem , Macrolídeos/administração & dosagem , Movimento/efeitos dos fármacos , Doença de Parkinson/psicologia , Anfetamina/administração & dosagem , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Modelos Animais de Doenças , Feminino , Masculino , Feixe Prosencefálico Mediano/efeitos dos fármacos , Feixe Prosencefálico Mediano/patologia , Camundongos Endogâmicos C57BL , Oxidopamina/administração & dosagem , Doença de Parkinson/fisiopatologia
4.
Alcohol Clin Exp Res ; 44(5): 1046-1060, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32267550

RESUMO

BACKGROUND: Excess alcohol (ethanol, EtOH) consumption is a significant cause of chronic liver disease, accounting for nearly half of the cirrhosis-associated deaths in the United States. EtOH-induced liver toxicity is linked to EtOH metabolism and its associated increase in proinflammatory cytokines, oxidative stress, and the subsequent activation of Kupffer cells. Dihydromyricetin (DHM), a bioflavonoid isolated from Hovenia dulcis, can reduce EtOH intoxication and potentially protect against chemical-induced liver injuries. But there remains a paucity of information regarding the effects of DHM on EtOH metabolism and liver protection. As such, the current study tests the hypothesis that DHM supplementation enhances EtOH metabolism and reduces EtOH-mediated lipid dysregulation, thus promoting hepatocellular health. METHODS: The hepatoprotective effect of DHM (5 and 10 mg/kg; intraperitoneal injection) was evaluated using male C57BL/6J mice and a forced drinking ad libitum EtOH feeding model and HepG2/VL-17A hepatoblastoma cell models. EtOH-mediated lipid accumulation and DHM effects against lipid deposits were determined via H&E stains, triglyceride measurements, and intracellular lipid dyes. Protein expression of phosphorylated/total proteins and serum and hepatic cytokines was determined via Western blot and protein array. Total NAD+ /NADH Assay of liver homogenates was used to detect NAD + levels. RESULTS: DHM reduced liver steatosis, liver triglycerides, and liver injury markers in mice chronically fed EtOH. DHM treatment resulted in increased activation of AMPK and downstream targets, carnitine palmitoyltransferase (CPT)-1a, and acetyl CoA carboxylase (ACC)-1. DHM induced expression of EtOH-metabolizing enzymes and reduced EtOH and acetaldehyde concentrations, effects that may be partly explained by changes in NAD+ . Furthermore, DHM reduced the expression of proinflammatory cytokines and chemokines in sera and cell models. CONCLUSION: In total, these findings support the utility of DHM as a dietary supplement to reduce EtOH-induced liver injury via changes in lipid metabolism, enhancement of EtOH metabolism, and suppressing inflammation responses to promote liver health.


Assuntos
Etanol/efeitos adversos , Etanol/metabolismo , Flavonóis/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatopatias Alcoólicas/prevenção & controle , Fígado/metabolismo , Adenilato Quinase/metabolismo , Animais , Suplementos Nutricionais , Ativação Enzimática/efeitos dos fármacos , Fígado Gorduroso Alcoólico/prevenção & controle , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Triglicerídeos/metabolismo
5.
Front Cell Neurosci ; 13: 331, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396053

RESUMO

Sensorimotor gating refers to the ability to filter incoming sensory information in a stimulus-laden environment and disruption of this physiological process has been documented in psychiatric disorders characterized by cognitive aberrations. The effectiveness of current pharmacotherapies for treatment of sensorimotor gating deficits in the patient population still remains controversial. These challenges emphasize the need to better understand the biological underpinnings of sensorimotor gating which could lead to discovery of novel drug targets for therapeutic intervention. Notably, we recently reported a role for purinergic P2X4 receptors (P2X4Rs) in regulation of sensorimotor gating using prepulse inhibition (PPI) of acoustic startle reflex. P2X4Rs are ion channels gated by adenosine-5'-triphosphate (ATP). Ivermectin (IVM) induced PPI deficits in C57BL/6J mice in a P2X4R-specific manner. Furthermore, mice deficient in P2X4Rs [P2X4R knockout (KO)] exhibited PPI deficits that were alleviated by dopamine (DA) receptor antagonists demonstrating an interaction between P2X4Rs and DA receptors in PPI regulation. On the basis of these findings, we hypothesized that increased DA neurotransmission underlies IVM-mediated PPI deficits. To test this hypothesis, we measured the effects of D1 and D2 receptor antagonists, SCH 23390 and raclopride respectively and D1 agonist, SKF 82958 on IVM-mediated PPI deficits. To gain mechanistic insights, we investigated the interaction between IVM and dopaminergic drugs on signaling molecules linked to PPI regulation in the ventral striatum. SCH 23390 significantly attenuated the PPI disruptive effects of IVM to a much greater degree than that of raclopride. SKF 82958 failed to potentiate IVM-mediated PPI disruption. At the molecular level, modulation of D1 receptors altered IVM's effects on dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa (DARPP-32) phosphorylation. Additionally, IVM interacted with the DA receptors antagonists and SKF 82958 in phosphorylation of Ca2+/calmodulin kinase IIα (CaMKIIα) and its downstream target, neuronal nitric oxide synthase (nNOS). Current findings suggest an involvement for D1 and D2 receptors in IVM-mediated PPI disruption via modulation of DARPP-32, CaMKIIα and nNOS. Taken together, the findings suggest that stimulation of P2X4Rs can lead to DA hyperactivity and disruption of information processing, implicating P2X4Rs as a novel drug target for treatment of psychiatric disorders characterized by sensorimotor gating deficits.

6.
JCI Insight ; 3(11)2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875325

RESUMO

The macrophage is a major phagocytic cell type, and its impaired function is a primary cause of immune paralysis, organ injury, and death in sepsis. An incomplete understanding of the endogenous molecules that regulate macrophage bactericidal activity is a major barrier for developing effective therapies for sepsis. Using an in vitro killing assay, we report here that the endogenous purine ATP augments the killing of sepsis-causing bacteria by macrophages through P2X4 receptors (P2X4Rs). Using newly developed transgenic mice expressing a bioluminescent ATP probe on the cell surface, we found that extracellular ATP levels increase during sepsis, indicating that ATP may contribute to bacterial killing in vivo. Studies with P2X4R-deficient mice subjected to sepsis confirm the role of extracellular ATP acting on P2X4Rs in killing bacteria and protecting against organ injury and death. Results with adoptive transfer of macrophages, myeloid-specific P2X4R-deficient mice, and P2rx4 tdTomato reporter mice indicate that macrophages are essential for the antibacterial, antiinflammatory, and organ protective effects of P2X4Rs in sepsis. Pharmacological targeting of P2X4Rs with the allosteric activator ivermectin protects against bacterial dissemination and mortality in sepsis. We propose that P2X4Rs represent a promising target for drug development to control bacterial growth in sepsis and other infections.


Assuntos
Macrófagos/imunologia , Receptores Purinérgicos P2X4/metabolismo , Sepse/imunologia , Transferência Adotiva , Animais , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Humanos , Ivermectina/administração & dosagem , Macrófagos/metabolismo , Macrófagos/transplante , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/imunologia , Sepse/tratamento farmacológico , Sepse/microbiologia , Sepse/mortalidade , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade
7.
Psychopharmacology (Berl) ; 235(6): 1697-1709, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29500584

RESUMO

The deleterious effects of alcohol use disorders (AUDs) on human health have been documented worldwide. The enormous socioeconomic burden coupled with lack of efficacious pharmacotherapies underlies the need for improved treatment strategies. At present, there is a growing body of preclinical evidence that demonstrates the potential of avermectins [ivermectin (IVM), selamectin (SEL), abamectin (ABM), and moxidectin (MOX)] in treatment of AUDs. Avermectins are derived by fermentation of soil micro-organism, Streptomyces avermitilis, and have been extensively used for treatment of parasitic infections. From the mechanistic standpoint, avermectins are positive modulators of purinergic P2X4 receptors (P2X4Rs). P2X4Rs belong to P2X superfamily of cation-permeable ion channels gated by adenosine 5'-triphosphate (ATP). Building evidence has implicated a role for P2X4Rs in regulation of ethanol intake and that ethanol can inhibit ATP-gated currents in P2X4Rs. Investigations using recombinant cell models and animal models of alcohol drinking have reported that IVM, ABM, and MOX, but not SEL, were able to antagonize the inhibitory effects of ethanol on P2X4Rs in vitro and reduce ethanol intake in vivo. Furthermore, IVM was shown to reduce ethanol consumption via P2X4R potentiation in vivo, supporting the involvement of P2X4Rs in IVM's anti-alcohol effects and that P2X4Rs can be used as a platform for developing novel anti-alcohol compounds. Taken together, these findings support the utility of avermectins as a novel class of drug candidates for treatment of AUDs.


Assuntos
Alcoolismo/tratamento farmacológico , Descoberta de Drogas/métodos , Ivermectina/análogos & derivados , Alcoolismo/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Etanol/administração & dosagem , Humanos , Ivermectina/metabolismo , Ivermectina/uso terapêutico , Receptores Purinérgicos P2X4/metabolismo
8.
Alcohol ; 68: 63-70, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29477921

RESUMO

Purinergic P2X4 receptors (P2X4Rs) belong to the P2X superfamily of ionotropic receptors that are gated by adenosine 5'-triphosphate (ATP). Accumulating evidence indicates that P2X4Rs play an important role in regulation of ethanol intake. At the molecular level, ethanol's inhibitory effects on P2X4Rs are antagonized by ivermectin (IVM), in part, via action on P2X4Rs. Behaviorally, male mice deficient in the p2rx4 gene (P2X4R knockout [KO]) have been shown to exhibit a transient increase in ethanol intake over a period of 4 days, as demonstrated by social and binge drinking paradigms. Furthermore, IVM reduced ethanol consumption in male and female rodents, whereas male P2X4R KO mice were less sensitive to the anti-alcohol effects of IVM, compared to wildtype (WT) mice, further supporting a role for P2X4Rs as targets of IVM's action. The current investigation extends testing the hypothesis that P2X4Rs play a role in regulation of ethanol intake. First, we tested the response of P2X4R KO mice to ethanol for a period of 5 weeks. Second, to gain insights into the changes in ethanol intake, we employed a lentivirus-shRNA (LV-shRNA) methodology to selectively knockdown P2X4R expression in the nucleus accumbens (NAc) core in male C57BL/6J mice. In agreement with our previous study, male P2X4R KO mice exhibited higher ethanol intake than WT mice. Additionally, reduced expression of P2X4Rs in the NAc core significantly increased ethanol intake and preference. Collectively, the findings support the hypothesis that P2X4Rs play a role in regulation of ethanol intake and that P2X4Rs represent a novel drug target for treatment of alcohol use disorder.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Receptores Purinérgicos P2X4/genética , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/genética , Alcoolismo/psicologia , Animais , Consumo Excessivo de Bebidas Alcoólicas/genética , Consumo Excessivo de Bebidas Alcoólicas/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microinjeções , Núcleo Accumbens/metabolismo , RNA Interferente Pequeno/genética , Receptores Purinérgicos P2X4/biossíntese
9.
Neuropharmacology ; 128: 11-21, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28943285

RESUMO

Neuroinflammation is one of the mechanisms leading to neurodegenerative brain damage induced by chronic alcohol (ethanol) exposure. Microglia play a major role in the development of innate immune responses to environmental injuries including ethanol. Adenosine 5″-triphosphate (ATP)-activated purinergic P2X receptor (P2XR) subtypes, P2X4Rs and P2X7Rs, are endogenously expressed in microglia and can modulate their activity. These 2 P2XR subtypes differ pharmacologically and functionally: 1) P2X4Rs are activated at lower (≤0.1 mM) whereas P2X7Rs - at higher (≥1.0 mM) ATP concentrations; 2) P2X4R activation contributes to the release of brain derived neurotrophic factor and its role in tactile allodynia and neuropathic pain is demonstrated; 3) Due to its role in the secretion of pro-inflammatory IL-1ß, P2X7Rs have been implicated in the development of neurodegenerative pathologies, pain and morphine tolerance. To date, the roles of individual P2XR subtypes in ethanol effects on microglia and the functional consequences are not completely understood. Based on the existing knowledge on the pharmacological and functional differences between P2X4Rs and P2X7Rs, the present work tested the hypothesis that P2X4Rs and P2X7Rs play differential roles in ethanol action in microglia. Effects of ethanol on P2X4R and P2X7R activity, expression and functional consequences were determined using murine BV2 microglial cells. Ethanol (≥100 mM) inhibited P2X4Rs but was inactive on P2X7 channel activity. Ethanol (25, 100 mM) inhibited P2X4R-mediated microglia migration whereas it potentiated pore formation in P2X7Rs. Furthermore, ethanol (25, 100 mM) potentiated P2X7R-mediated IL-1ß secretion from BV2 microglia. Ethanol also induced protein expression for both P2XR subtypes. Overall, the findings identify differential roles for P2X4Rs and P2X7Rs in regards to ethanol effects on microglia which may be linked to different stages of ethanol exposure.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Microglia/efeitos dos fármacos , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Técnicas de Patch-Clamp , Inibidores da Agregação Plaquetária/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
10.
J Neurosci ; 36(34): 8902-20, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27559172

RESUMO

UNLABELLED: P2X4 receptors are ATP-gated cation channels that are widely expressed in the nervous system. To identify P2X4 receptor-expressing cells, we generated BAC transgenic mice expressing tdTomato under the control of the P2X4 receptor gene (P2rx4). We found sparse populations of tdTomato-positive neurons in most brain areas with patterns that matched P2X4 mRNA distribution. tdTomato expression within microglia was low but was increased by an experimental manipulation that triggered microglial activation. We found surprisingly high tdTomato expression in the hypothalamic arcuate nucleus (Arc) (i.e., within parts of the neural circuitry controlling feeding). Immunohistochemistry and genetic crosses of P2rx4 tdTomato mice with cell-specific GFP reporter lines showed that the tdTomato-expressing cells were mainly AgRP-NPY neurons and tanycytes. There was no electrophysiological evidence for functional expression of P2X4 receptors on AgRP-NPY neuron somata, but instead, we found clear evidence for functional presynaptic P2X4 receptor-mediated responses in terminals of AgRP-NPY neurons onto two of their postsynaptic targets (Arc POMC and paraventricular nucleus neurons), where ATP dramatically facilitated GABA release. The presynaptic responses onto POMC neurons, and the expression of tdTomato in AgRP-NPY neurons and tanycytes, were significantly decreased by food deprivation in male mice in a manner that was partially reversed by the satiety-related peptide leptin. Overall, we provide well-characterized tdTomato reporter mice to study P2X4-expressing cells in the brain, new insights on feeding-related regulation of presynaptic P2X4 receptor responses, and the rationale to explore extracellular ATP signaling in the control of feeding behaviors. SIGNIFICANCE STATEMENT: Cells expressing ATP-gated P2X4 receptors have proven problematic to identify and study in brain slice preparations because P2X4 expression is sparse. To address this limitation, we generated and characterized BAC transgenic P2rx4 tdTomato reporter mice. We report the distribution of tdTomato-expressing cells throughout the brain and particularly strong expression in the hypothalamic arcuate nucleus. Together, our studies provide a new, well-characterized tool with which to study P2X4 receptor-expressing cells. The electrophysiological studies enabled by this mouse suggest previously unanticipated roles for ATP and P2X4 receptors in the neural circuitry controlling feeding.


Assuntos
Encéfalo/citologia , Ingestão de Alimentos/fisiologia , Proteínas Luminescentes/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Encéfalo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Privação de Alimentos/fisiologia , Grelina/farmacologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Técnicas In Vitro , Leptina/farmacologia , Lipopolissacarídeos/farmacologia , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Inibidores da Agregação Plaquetária/farmacologia , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo , Receptores Purinérgicos P2X4/genética , Estatísticas não Paramétricas , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ácido gama-Aminobutírico/metabolismo
11.
Neurochem Res ; 39(6): 1127-39, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24671605

RESUMO

P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular adenosine 5'-triphosphate. The P2X4 subtype is abundantly expressed in the central nervous system and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol's effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-h and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50 % less in the P2X4R KO mice. Western blot analysis identified significant changes in γ-aminobutyric acidA receptor α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Etanol/administração & dosagem , Receptores Purinérgicos P2X4/deficiência , Consumo de Bebidas Alcoólicas/genética , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Purinérgicos P2X4/genética
12.
Alcohol Clin Exp Res ; 38(3): 595-603, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24164436

RESUMO

The molecular mechanism(s) of action of anesthetic, and especially, intoxicating doses of alcohol (ethanol [EtOH]) have been of interest even before the advent of the Research Society on Alcoholism. Recent physiological, genetic, and biochemical studies have pin-pointed molecular targets for anesthetics and EtOH in the brain as ligand-gated ion channel (LGIC) membrane proteins, especially the pentameric (5 subunit) Cys-loop superfamily of neurotransmitter receptors including nicotinic acetylcholine (nAChRs), GABAA (GABAA Rs), and glycine receptors (GlyRs). The ability to demonstrate molecular and structural elements of these proteins critical for the behavioral effects of these drugs on animals and humans provides convincing evidence for their role in the drugs' actions. Amino acid residues necessary for pharmacologically relevant allosteric modulation of LGIC function by anesthetics and EtOH have been identified in these channel proteins. Site-directed mutagenesis revealed potential allosteric modulatory sites in both the trans-membrane domain (TMD) and extracellular domain (ECD). Potential sites of action and binding have been deduced from homology modeling of other LGICs with structures known from crystallography and cryo-electron microscopy studies. Direct information about ligand binding in the TMD has been obtained by photoaffinity labeling, especially in GABAA Rs. Recent structural information from crystallized procaryotic (ELIC and GLIC) and eukaryotic (GluCl) LGICs allows refinement of the structural models including evaluation of possible sites of EtOH action.


Assuntos
Anestésicos/farmacologia , Depressores do Sistema Nervoso Central/farmacologia , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/efeitos dos fármacos , Etanol/farmacologia , Modelos Moleculares , Sequência de Aminoácidos , Anestésicos/metabolismo , Animais , Depressores do Sistema Nervoso Central/metabolismo , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Etanol/metabolismo , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Molecular
13.
Neuropsychopharmacology ; 38(10): 1993-2002, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23604007

RESUMO

Purinergic P2X receptors are a family of ligand-gated ion channels gated by extracellular adenosine 5'-triphosphate (ATP). Of the seven P2X subtypes, P2X4 receptors (P2X4Rs) are richly expressed in the brain, yet their role in behavioral organization remains poorly understood. In this study, we examined the behavioral responses of P2X4R heterozygous (HZ) and knockout (KO) mice in a variety of testing paradigms designed to assess complementary aspects of sensory functions, emotional reactivity, and cognitive organization. P2X4R deficiency did not induce significant alterations of locomotor activity and anxiety-related indices in the novel open field and elevated plus-maze tests. Conversely, P2X4R KO mice displayed marked deficits in acoustic startle reflex amplitude, as well as significant sensorimotor gating impairments, as assessed by the prepulse inhibition of the startle. In addition, P2X4R KO mice displayed enhanced tactile sensitivity, as signified by a lower latency in the sticky-tape removal test. Moreover, both P2X4R HZ and KO mice showed significant reductions in social interaction and maternal separation-induced ultrasonic vocalizations in pups. Notably, brain regions of P2X4R KO mice exhibited significant brain-regional alterations in the subunit composition of glutamate ionotropic receptors. These results collectively document that P2X4-deficient mice exhibit a spectrum of phenotypic abnormalities partially akin to those observed in other murine models of autism-spectrum disorder. In conclusion, our findings highlight a putative role of P2X4Rs in the regulation of perceptual and sociocommunicative functions and point to these receptors as putative targets for disturbances associated with neurodevelopmental disorders.


Assuntos
Atividade Motora/fisiologia , Percepção Olfatória , Receptores Purinérgicos P2X4/fisiologia , Comportamento Social , Vocalização Animal/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Comportamento Exploratório/fisiologia , Heterozigoto , Masculino , Privação Materna , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Knockout , Percepção Olfatória/fisiologia , Subunidades Proteicas/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Purinérgicos P2X4/genética , Reflexo de Sobressalto/fisiologia , Filtro Sensorial/fisiologia , Percepção do Tato/fisiologia
14.
Int J Neuropsychopharmacol ; 16(5): 1059-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23174033

RESUMO

Purinergic ionotropic P2X receptors are a family of cation-permeable channels that bind extracellular adenosine 5'-triphosphate. In particular, convergent lines of evidence have recently highlighted P2X(4) receptors as a potentially critical target in the regulation of multiple nervous and behavioural functions, including pain, neuroendocrine regulation and hippocampal plasticity. Nevertheless, the role of the P2X(4) receptor in behavioural organization remains poorly investigated. To study the effects of P2X(4) activation, we tested the acute effects of its potent positive allosteric modulator ivermectin (IVM, 2.5-10 mg/kg i.p.) on a broad set of paradigms capturing complementary aspects of perceptual, emotional and cognitive regulation in mice. In a novel open field, IVM did not induce significant changes in locomotor activity, but increased the time spent in the peripheral zone. In contrast, IVM produced anxiolytic-like effects in the elevated plus maze and marble burying tasks, as well as depression-like behaviours in the tail-suspension and forced swim tests. The agent induced no significant behavioural changes in the conditioned place preference test and in the novel object recognition task. Finally, the drug induced a dose-dependent decrease in sensorimotor gating, as assessed by pre-pulse inhibition (PPI) of the acoustic startle reflex. In P2X(4) knockout mice, the effects of IVM in the open field and elevated plus maze were similar to those observed in wild type mice; conversely, the drug significantly increased startle amplitude and failed to reduce PPI. Taken together, these results suggest that P2X(4) receptors may play a role in the regulation of sensorimotor gating.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inseticidas/farmacologia , Ivermectina/farmacologia , Receptores Purinérgicos P2X4/metabolismo , Animais , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Elevação dos Membros Posteriores , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Medição da Dor/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Receptores Purinérgicos P2X4/deficiência , Filtro Sensorial/efeitos dos fármacos , Estatísticas não Paramétricas , Natação
15.
Alcohol Clin Exp Res ; 35(4): 584-94, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21223299

RESUMO

In the central nervous system, adenosine and adenosine 5'-triphosphate (ATP) play an important role in regulating neuronal activity as well as controlling other neurotransmitter systems, such as, GABA, glutamate, and dopamine. Ethanol increases extracellular adenosine levels that regulate the ataxic and hypnotic/sedative effects of ethanol. Interestingly, ethanol is known to increase adenosine levels by inhibiting an ethanol-sensitive adenosine transporter, equilibrative nucleoside transporter type 1 (ENT1). Ethanol is also known to inhibit ATP-specific P2X receptors, which might result in such similar effects as those caused by an increase in adenosine. Adenosine and ATP exert their functions through P1 (metabotropic) and P2 (P2X-ionotropic and P2Y-metabotropic) receptors, respectively. Purinergic signaling in cortex-striatum-ventral tegmental area (VTA) has been implicated in regulating cortical glutamate signaling as well as VTA dopaminergic signaling, which regulates the motivational effect of ethanol. Moreover, several nucleoside transporters and receptors have been identified in astrocytes, which regulate not only adenosine-ATP neurotransmission, but also homeostasis of major inhibitory-excitatory neurotransmission (i.e., GABA or glutamate) through neuron-glial interactions. This review will present novel findings on the implications of adenosine and ATP neurotransmission in alcohol use disorders.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Transtornos Relacionados ao Uso de Álcool/metabolismo , Córtex Cerebral/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Etanol/farmacologia , Proteínas de Transporte de Nucleosídeos/metabolismo , Animais , Córtex Cerebral/metabolismo , Etanol/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Transmissão Sináptica
16.
J Pharmacol Exp Ther ; 334(3): 720-8, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20543096

RESUMO

ATP-gated purinergic P2X4 receptors (P2X4Rs) are expressed in the central nervous system and are sensitive to ethanol at intoxicating concentrations. P2XRs are trimeric; each subunit consists of two transmembrane (TM) alpha-helical segments, a large extracellular domain, and intracellular amino and carboxyl terminals. Recent work indicates that position 336 (Met336) in the TM2 segment is critical for ethanol modulation of P2X4Rs. The anthelmintic medication ivermectin (IVM) positively modulates P2X4Rs and is believed to act in the same region as ethanol. The present study tested the hypothesis that IVM can antagonize ethanol action. We investigated IVM and ethanol effects in wild-type and mutant P2X4Rs expressed in Xenopus oocytes by using a two-electrode voltage clamp. IVM antagonized ethanol-induced inhibition of P2X4Rs in a concentration-dependent manner. The size and charge of substitutions at position 336 affected P2X4R sensitivity to both ethanol and IVM. The first molecular model of the rat P2X4R, built onto the X-ray crystal structure of zebrafish P2X4R, revealed a pocket formed by Asp331, Met336, Trp46, and Trp50 that may play a role in the actions of ethanol and IVM. These findings provide the first evidence for IVM antagonism of ethanol effects in P2X4Rs and suggest that the antagonism results from the ability of IVM to interfere with ethanol action on the putative pocket at or near position 336. Taken with the building evidence supporting a role for P2X4Rs in ethanol intake, the present findings suggest that the newly identified alcohol pocket is a potential site for development of medication for alcohol use disorders.


Assuntos
Anti-Helmínticos/farmacologia , Depressores do Sistema Nervoso Central/antagonistas & inibidores , Depressores do Sistema Nervoso Central/farmacologia , Etanol/antagonistas & inibidores , Etanol/farmacologia , Ivermectina/farmacologia , Antagonistas do Receptor Purinérgico P2 , Trifosfato de Adenosina/farmacologia , Animais , Biotinilação , Western Blotting , Cristalografia por Raios X , Metionina/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , RNA Complementar/farmacologia , Ratos , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2X4 , Xenopus , Peixe-Zebra
17.
J Neurochem ; 112(1): 307-17, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19878433

RESUMO

ATP-gated P2X4 receptors (P2X4R) are abundantly expressed in the CNS. However, little is known about the molecular targets for ethanol action in P2X4Rs. The current investigation tested the hypothesis that the ectodomain-transmembrane (TM) interface contains residues that are important for the action of ethanol in P2X4Rs. Wild type (WT) and mutant P2X4R were expressed in Xenopus oocytes. ATP concentration-response curves and ethanol (10-200 mM)-induced changes in ATP EC(10)-gated currents were determined using two-electrode voltage clamp (-70 mV). Alanine substitution at the ectodomain-TM1 interface (positions 50-61) resulted in minimal changes in ethanol response. On the other hand, alanine substitution at the ectodomain-TM2 interface (positions 321-337) identified two key residues (D331 and M336) that significantly reduced ethanol inhibition of ATP-gated currents without causing marked changes in ATP I(max), EC(50), or Hill's slope. Other amino acid substitutions at positions 331 and 336 significantly altered or eliminated the modulatory effects of ethanol. Linear regression analyses revealed a significant relationship between hydropathy and polarity, but not molecular volume/molecular weight of the residues at these two positions. The results support the proposed hypothesis and represent an important step toward developing ethanol-insensitive receptors for investigating the role of P2X4Rs in mediating behavioral effects of ethanol.


Assuntos
Etanol/farmacologia , Mutação Puntual/genética , Antagonistas do Receptor Purinérgico P2 , Receptores Purinérgicos P2/genética , Trifosfato de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Etanol/antagonistas & inibidores , Feminino , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/genética , Receptores Purinérgicos P2X4 , Xenopus laevis
18.
Pharm Res ; 26(10): 2358-66, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19685173

RESUMO

PURPOSE: The human dipeptide transporter (hPEPT1) facilitates transport of dipeptides and drugs from the intestine into the circulation. The role of transmembrane domain 10 (TMD10) of hPEPT1 in substrate translocation was investigated using cysteine-scanning mutagenesis with 2-Trimethylammonioethyl methanethiosulfonate (MTSET). METHODS: Each amino acid in TMD10 was mutated individually to cysteine, and transport of [(3)H]Gly-Sar was evaluated with and without MTSET following transfection of each mutant in HEK293 cells. Similar localization and expression levels of wild type (WT) hPEPT1 and all mutants were confirmed by immunostaining and biotinylation followed by western blot analysis. RESULTS: E595C- and G594C-hPEPT1 showed negligible Gly-Sar uptake. E595D-hPEPT1 showed similar uptake to WT-hPEPT1, but E595K- and E595R-hPEPT1 did not transport Gly-Sar. Double mutations E595K/R282E and E595R/R282E did not restore uptake. G594A-hPEPT1 showed similar uptake to WT-hPEPT1, but G594V-hPEPT1 eliminated uptake. Y588C-hPEPT1 showed uptake of 20% that of WT-hPEPT1. MTSET modification supported a model of TMD10 with an amphipathic helix from I585 to V600 and increased solvent accessibility from T601 to F605. CONCLUSIONS: Our results suggest that G594 and E595 in TMD10 of hPEPT1 have key roles in substrate transport and that Y588 may have an important secondary mechanistic role.


Assuntos
Substituição de Aminoácidos/genética , Cisteína/genética , Dipeptídeos/genética , Mutagênese Sítio-Dirigida , Simportadores/genética , Linhagem Celular , Membrana Celular/química , Membrana Celular/genética , Cisteína/química , Dipeptídeos/química , Espaço Extracelular/química , Espaço Extracelular/genética , Ácido Glutâmico/química , Ácido Glutâmico/genética , Glicina/química , Glicina/genética , Humanos , Transportador 1 de Peptídeos , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Simportadores/química , Tirosina/química , Tirosina/genética
19.
J Biol Chem ; 283(41): 27698-27706, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18658152

RESUMO

The present study tested the hypothesis that several residues in Loop 2 of alpha1 glycine receptors (GlyRs) play important roles in mediating the transduction of agonist activation to channel gating. This was accomplished by investigating the effect of cysteine point mutations at positions 50-60 on glycine responses in alpha1GlyRs using two-electrode voltage clamp of Xenopus oocytes. Cysteine substitutions produced position-specific changes in glycine sensitivity that were consistent with a beta-turn structure of Loop 2, with odd-numbered residues in the beta-turn interacting with other agonist-activation elements at the interface between extracellular and transmembrane domains. We also tested the hypothesis that the charge at position 53 is important for agonist activation by measuring the glycine response of wild type (WT) and E53C GlyRs exposed to methanethiosulfonate reagents. As earlier, E53C GlyRs have a significantly higher EC(50) than WT GlyRs. Exposing E53C GlyRs to the negatively charged 2-sulfonatoethyl methanethiosulfonate, but not neutral 2-hydroxyethyl methanethiosulfonate, positively charged 2-aminoethyl methanethiosulfonate, or 2-trimethylammonioethyl methanethiosulfonate, decreased the glycine EC(50) to resemble WT GlyR responses. Exposure to these reagents did not significantly alter the glycine EC(50) for WT GlyRs. The latter findings suggest that the negative charge at position 53 is important for activation of GlyRs through its interaction with positive charge(s) in other neighboring agonist activation elements. Collectively, the findings provide the basis for a refined molecular model of alpha1GlyRs based on the recent x-ray structure of a prokaryotic pentameric ligand-gated ion channel and offer insight into the structure-function relationships in GlyRs and possibly other ligand-gated ion channels.


Assuntos
Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Receptores de Glicina/agonistas , Receptores de Glicina/metabolismo , Substituição de Aminoácidos , Animais , Feminino , Humanos , Oócitos/citologia , Mutação Puntual , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Receptores de Glicina/genética , Xenopus laevis
20.
Neuropharmacology ; 55(5): 835-43, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18639563

RESUMO

The present work investigated sites of ethanol action in ATP-gated P2X receptors (P2XRs) using chimeric strategies that exploited the differences in ethanol response between P2X2R (inhibition) and P2X3R (potentiation). We tested ethanol (10-200mM) effects on ATP- and alpha,beta-methylene-ATP (alpha,beta-meATP)-induced currents in wildtype P2X2, P2X3 and chimeric P2X2/P2X3Rs expressed in Xenopus oocytes using two-electrode voltage-clamp (-70mV). Exchanging ectodomain regions of P2X2 and P2X3Rs reversed wildtype ethanol responses. Substituting back portions of the P2X2R ectodomain at TM interfaces in chimeras that contained the P2X3R ectodomain restored wildtype P2X2R-like ethanol response. Point mutations that replaced non-conserved ectodomain residues at TM interfaces of P2X3Rs with homologous P2X2R residues identified positions that reversed the direction (304) or changed the magnitude (53, 55 and 313) of ethanol response. Homologous substitutions in P2X2Rs did not significantly alter wildtype P2X2R-like ethanol responses. These findings suggest that ectodomain segments at TM interfaces play key roles in determining qualitative and quantitative responses to ethanol of P2X2 and P2X3Rs. Studies that substituted TM regions of P2X3R with respective P2X2R TMs indicate that the TM1, but not the TM2, region plays a role in determining the magnitude of ethanol response. Studies with ATP and alpha,beta-meATP support prior indications that TM regions are important in agonist desensitization and suggest that both ectodomain and TM regions play roles in determining agonist potency and selectivity. Overall, these findings are the first to identify potential targets for ethanol in P2X2 and P2X3Rs and should provide insight into the sites of ethanol action in other P2XRs.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Agonistas do Receptor Purinérgico P2 , Receptores Purinérgicos P2/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Mutação , Oócitos , Técnicas de Patch-Clamp/métodos , Estrutura Terciária de Proteína/efeitos dos fármacos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3 , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA