Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Autoimmun ; 126: 102746, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801870

RESUMO

BACKGROUND: Graves' disease (GD) is associated with thyroid stimulating hormone (TSH) receptor (TSHR) antibodies of variable bioactivity. We have previously characterized "neutral" TSHR antibodies (N-TSHR-Abs) that bind to the hinge region of the TSHR ectodomain. We showed that an N-TSHR monoclonal antibody (mAb) failed to induce any G proteins to sustain survival signaling and lead to excessive stress and apoptosis. Furthermore, the addition of TSH, or the antioxidant N-acetyl-l-cysteine (NAC), rescued N-TSHR-mAb-induced apoptotic death. However, the detailed mechanisms of this rescue remained unclear. METHODS: Autophagy is activated in response to diverse stress related stimuli so we have, therefore, studied the autophagy response in rat thyroid cells (FRTL-5) during N-TSHR-mAb induced thyrocyte stress and apoptosis using the In Cell Western technique for quantitation along with immunocytochemistry. RESULTS: Under starvation conditions with N-TSHR-mAb the addition of TSH or NAC prevented thyroid cell death by enhancing autophagy. This was evidenced by elevated levels of autophagy related proteins including beclin 1, LC3A, LC3B, ULK1, p62, and also activated pink and perkin mitophagy related proteins. The phenomenon was further confirmed by image analyses using Cyto-ID and Mito-ID autophagy detection systems. We also found that either TSH or NAC enhanced PKA, Akt, mTORC, AMPK, Sirtuins, PGC1α, NRF-2, mitofusin-2, TFAM and catalase in the N-TSHR-mAb stressed cells. Thus TSH or NAC restored cell survival signaling which reduced cell stress and enhanced mitochondrial biogenesis. The N-TSHR-mAb also activated cytochrome-C, Bax, caspase-9, caspase-3A, and had less effect on FADD or caspase-8 indicating activation of the intrinsic pathway for apoptosis. CONCLUSIONS: These findings indicated that TSH or antioxidant can rescue thyroid cells from N-TSHR-mAb induced apoptosis via enhanced autophagy. These observations signify that N-TSHR-mAb in GD under low TSH conditions caused by the hyperthyroidism could be detrimental for thyrocyte survival which would be another factor able to precipitate ongoing autoinflammation.


Assuntos
Receptores da Tireotropina , Glândula Tireoide , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Apoptose , Autofagia , Ratos
2.
Front Endocrinol (Lausanne) ; 12: 706101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276566

RESUMO

The synergistic activation of transcription factors can lead to thyroid progenitor cell speciation. We have previously shown in vitro that mouse or human stem cells, expressing the transcription factors NKx2-1 and Pax8, can differentiate into thyroid neo-follicular structures (TFS). We now show that syngeneic mouse TFS when implanted into hypothyroid TSH receptor knockout (TSHR-KO) mice can ameliorate the hypothyroid state for an extended period. ES cells derived from heterozygous TSHR-KO blastocysts were stably transfected with Nkx2-1-GFP and Pax8-mcherry constructs and purified into 91.8% double positive cells by flow cytometry. After 5 days of activin A treatment these double positive cells were then induced to differentiate into neo-follicles in Matrigel for 21 days in the presence of 500µU/mL of TSH. Differentiated TFS expressing thyroglobulin mRNA were implanted under the kidney capsule of 4-6 weeks old TSHR-KO mice (n=5) as well as hind limb muscle (n=2) and anterior chamber of one eye (n=2). Five of the mice tested after 4 weeks were all rendered euthyroid and all mice remained euthyroid at 20 weeks post implantation. The serum T4 fully recovered (pre-bleed 0.62 ± 0.03 to 8.40 ± 0.57 µg/dL) and the previously elevated TSH became normal or suppressed (pre-bleed 391 ± 7.6 to 4.34 ± 1.25 ng/dL) at the end of the 20 week observation period. The final histology obtained from the implanted kidney tissues showed only rudimentary thyroid follicular structures but which stained positive for thyroglobulin expression. The presence of only rudimentary structures at the site of implant on these extended animals suggested possible migration of cells from the site of implant or an inability of TFCs to maintain proper follicular morphology in these external sites for extended periods. However, there were no signs of tumor formation and no immune infiltration. These preliminary studies show that TSHR-KO mice are a useful model for orthotropic implantation of functional thyroid cells without the need for thyroidectomy, radioiodine ablation or anti thyroid drug control of thyroid function. This approach is also proof of principle that thyroid cells derived from mouse ES cells are capable of surviving as functional neo-follicles in vivo for an extended period of 20 weeks.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Hipotireoidismo/terapia , Receptores da Tireotropina/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Glândula Tireoide/citologia , Animais , Feminino , Hipotireoidismo/etiologia , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Testes de Função Tireóidea
3.
J Clin Endocrinol Metab ; 106(12): e4809-e4821, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34318885

RESUMO

Thyrotropin (TSH), traditionally seen as a pituitary hormone that regulates thyroid glands, has additional roles in physiology including skeletal remodeling. Population-based observations in people with euthyroidism or subclinical hyperthyroidism indicated a negative association between bone mass and low-normal TSH. The findings of correlative studies were supported by small intervention trials using recombinant human TSH (rhTSH) injection, and genetic and case-based evidence. Genetically modified mouse models, which disrupt the reciprocal relationship between TSH and thyroid hormone, have allowed us to examine an independent role of TSH. Since the first description of osteoporotic phenotype in haploinsufficient Tshr +/- mice with normal thyroid hormone levels, the antiosteoclastic effect of TSH has been documented in both in vitro and in vivo studies. Further studies showed that increased osteoclastogenesis in Tshr-deficient mice was mediated by tumor necrosis factor α. Low TSH not only increased osteoclastogenesis, but also decreased osteoblastogenesis in bone marrow-derived primary osteoblast cultures. However, later in vivo studies using small and intermittent doses of rhTSH showed a proanabolic effect, which suggests that its action might be dose and frequency dependent. TSHR was shown to interact with insulin-like growth factor 1 receptor, and vascular endothelial growth factor and Wnt pathway might play a role in TSH's effect on osteoblasts. The expression and direct skeletal effect of a biologically active splice variant of the TSHß subunit (TSHßv) in bone marrow-derived macrophage and other immune cells suggest a local skeletal effect of TSHR. Further studies of how locally secreted TSHßv and systemic TSHß interact in skeletal remodeling through the endocrine, immune, and skeletal systems will help us better understand the hyperthyroidism-induced bone disease.


Assuntos
Doenças Ósseas/patologia , Osso e Ossos/patologia , Hipertireoidismo/complicações , Tireotropina/metabolismo , Animais , Doenças Ósseas/etiologia , Doenças Ósseas/metabolismo , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-32760346

RESUMO

Background: The success in rescuing thyroid deficiency in mice using thyroid cells derived from embryonic stem (ES) cells, together with the discovery of human induced pluripotent stem cells (iPSCs) from somatic cells, has raised the possibility of patient-specific thyroid cell replacement. In this study we demonstrate that human thyroid follicular cells can be derived from human iPSCs and show the ability of highly purified and differentiated cells to secrete thyroid hormone. Research Design and Methods: Human iPSCs were derived from adult skin fibroblasts using RNA reprogramming and differentiated in vitro into thyroid follicular cells by exposure to activin A, ethacridine and TSH as we have previously described for human ES cells. The resulting thyroid cells were then highly purified using double antibody cell sorting. Results: The iPSCs derived from human dermal fibroblasts showed stem cell-like morphologic changes and expressed pluripotent stem cell markers as assessed using qPCR, immunofluorescence staining, and FACS analysis. These cells retained their pluripotential characteristics as shown by teratoma formation after murine transplantation. Definitive endoderm cells were induced with activin A and the transcription factor TAZ was significantly induced on ethacridine treatment and translocated to the nucleus. Thyroid transcription factors NKX2-1 and PAX8 were also highly expressed in activin A derived endoderm cells and further induced by ethacridine. Following terminal differentiation with TSH, there was enhanced thyroid follicle formation, high expression of the thyroid specific genes-TG, TPO, TSHR and NIS, and secretion of thyroid hormone (T4) in vitro. Furthermore, we were able to achieve a 97% purification of TSHR+/NIS+ expressing cells after differentiation using a single purification procedure. Conclusions: These findings demonstrate that mature adult dermal fibroblasts can be matured into human iPSCs which have the potential to form functional thyroid follicular cells. This lays the groundwork for future person-specific thyroid regenerative therapy.


Assuntos
Diferenciação Celular , Reprogramação Celular , Fibroblastos/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Teratoma/patologia , Células Epiteliais da Tireoide/citologia , Animais , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Teratoma/metabolismo , Células Epiteliais da Tireoide/metabolismo
5.
Endocrinology ; 161(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738139

RESUMO

To gain further insight into the binding of the normal and variant human TSHß subunits (TSHß and TSHßv), we modeled the 2 monomeric proteins and studied their interaction with the TSH receptor ectodomain (TSHR-ECD) using molecular dynamics simulation Furthermore, analyzed their bioactivity in vitro using recombinant proteins to confirm that such binding was physiologically relevant. Examining the interaction of TSHß and TSHßv with the TSHR-ECD model using molecular dynamic simulation revealed strong binding of these proteins to the receptor ECD. The specificity of TSHß and TSHßv binding to the TSHR-ECD was examined by analyzing the hydrogen-bonding residues of these subunits to the FSH receptor ECD, indicating the inability of these molecules to bind to the FSH receptors. Furthermore, the modelling suggests that TSHß and TSHßv proteins clasped the concave surface of the leucine rich region of the TSHR ECD in a similar way to the native TSH using dynamic hydrogen bonding. These mutually exclusive stable interactions between the subunits and ECD residues included some high-affinity contact sites corresponding to binding models of native TSH. Furthermore, we cloned TSHß and TSHßv proteins using the entire coding ORF and purified the flag-tagged proteins. The expressed TSHß subunit proteins retained bioactivity both in a coculture system as well as with immune-purified proteins. In summary, we showed that such interactions can result in a functional outcome and may exert physiological or pathophysiological effects in immune cells.


Assuntos
Domínios e Motivos de Interação entre Proteínas , Receptores da Tireotropina/química , Receptores da Tireotropina/metabolismo , Tireotropina Subunidade beta/química , Tireotropina Subunidade beta/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas
6.
Nat Rev Dis Primers ; 6(1): 52, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616746

RESUMO

Graves' disease (GD) is an autoimmune disease that primarily affects the thyroid gland. It is the most common cause of hyperthyroidism and occurs at all ages but especially in women of reproductive age. Graves' hyperthyroidism is caused by autoantibodies to the thyroid-stimulating hormone receptor (TSHR) that act as agonists and induce excessive thyroid hormone secretion, releasing the thyroid gland from pituitary control. TSHR autoantibodies also underlie Graves' orbitopathy (GO) and pretibial myxoedema. Additionally, the pathophysiology of GO (and likely pretibial myxoedema) involves the synergism of insulin-like growth factor 1 receptor (IGF1R) with TSHR autoantibodies, causing retro-orbital tissue expansion and inflammation. Although the aetiology of GD remains unknown, evidence indicates a strong genetic component combined with random potential environmental insults in an immunologically susceptible individual. The treatment of GD has not changed substantially for many years and remains a choice between antithyroid drugs, radioiodine or surgery. However, antithyroid drug use can cause drug-induced embryopathy in pregnancy, radioiodine therapy can exacerbate GO and surgery can result in hypoparathyroidism or laryngeal nerve damage. Therefore, future studies should focus on improved drug management, and a number of important advances are on the horizon.


Assuntos
Antirretrovirais/efeitos adversos , Infecções por HIV/complicações , Antirretrovirais/farmacologia , Gerenciamento Clínico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/fisiopatologia , Humanos , Qualidade de Vida/psicologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Produtos do Gene vpr do Vírus da Imunodeficiência Humana
7.
Nature ; 546(7656): 107-112, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538730

RESUMO

Menopause is associated with bone loss and enhanced visceral adiposity. A polyclonal antibody that targets the ß-subunit of the pituitary hormone follicle-stimulating hormone (Fsh) increases bone mass in mice. Here, we report that this antibody sharply reduces adipose tissue in wild-type mice, phenocopying genetic haploinsufficiency for the Fsh receptor gene Fshr. The antibody also causes profound beiging, increases cellular mitochondrial density, activates brown adipose tissue and enhances thermogenesis. These actions result from the specific binding of the antibody to the ß-subunit of Fsh to block its action. Our studies uncover opportunities for simultaneously treating obesity and osteoporosis.


Assuntos
Tecido Adiposo/metabolismo , Adiposidade , Subunidade beta do Hormônio Folículoestimulante/antagonistas & inibidores , Termogênese , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Feminino , Subunidade beta do Hormônio Folículoestimulante/imunologia , Haploinsuficiência , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Obesidade/prevenção & controle , Osteoporose/tratamento farmacológico , Ovariectomia , Consumo de Oxigênio/efeitos dos fármacos , Receptores do FSH/antagonistas & inibidores , Receptores do FSH/genética , Receptores do FSH/metabolismo , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/biossíntese
8.
Expert Opin Ther Targets ; 19(6): 835-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25768836

RESUMO

INTRODUCTION: The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves' disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. AREAS COVERED: We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. EXPERT OPINION: Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues.


Assuntos
Doença de Graves/tratamento farmacológico , Receptores da Tireotropina/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Animais , Anticorpos/imunologia , Autoantígenos/imunologia , Desenho de Fármacos , Doença de Graves/fisiopatologia , Humanos , Ligantes , Terapia de Alvo Molecular , Receptores da Tireotropina/imunologia , Transdução de Sinais/fisiologia , Neoplasias da Glândula Tireoide/patologia
9.
Endocrinology ; 156(2): 488-98, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25406938

RESUMO

The TSH receptor (TSHR) has the propensity to form dimers and oligomers. Our data using ectodomain-truncated TSHRs indicated that the predominant interfaces for oligomerization reside in the transmembrane (TM) domain. To map the potentially interacting residues, we first performed in silico studies of the TSHR transmembrane domain using a homology model and using Brownian dynamics (BD). The cluster of dimer conformations obtained from BD analysis indicated that TM1 made contact with TM4 and two residues in TM2 made contact with TM5. To confirm the proximity of these contact residues, we then generated cysteine mutants at all six contact residues predicted by the BD analysis and performed cysteine cross-linking studies. These results showed that the predicted helices in the protomer were indeed involved in proximity interactions. Furthermore, an alternative experimental approach, receptor truncation experiments and LH receptor sequence substitution experiments, identified TM1 harboring a major region involved in TSHR oligomerization, in agreement with the conclusion from the cross-linking studies. Point mutations of the predicted interacting residues did not yield a substantial decrease in oligomerization, unlike the truncation of the TM1, so we concluded that constitutive oligomerization must involve interfaces forming domains of attraction in a cooperative manner that is not dominated by interactions between specific residues.


Assuntos
Receptores da Tireotropina/química , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Modelos Químicos , Mutação , Polimerização , Estrutura Terciária de Proteína , Receptores da Tireotropina/genética
10.
Thyroid ; 25(1): 51-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25333622

RESUMO

BACKGROUND: Novel small molecular ligands (SMLs) to the thyrotropin receptor (TSHR) have potential as improved molecular probes and as therapeutic agents for the treatment of thyroid dysfunction and thyroid cancer. METHODS: To identify novel SMLs to the TSHR, we developed a transcription-based luciferase-cAMP high-throughput screening system and we screened 48,224 compounds from a 100K library in duplicate. RESULTS: We obtained 62 hits using the cut-off criteria of the mean±three standard deviations above the baseline. Twenty molecules with the greatest activity were rescreened against the parent CHO-luciferase cell for nonspecific activation, and we selected two molecules (MS437 and MS438) with the highest potency for further study. These lead molecules demonstrated no detectible cross-reactivity with homologous receptors when tested against luteinizing hormone (LH)/human chorionic gonadotropin receptor and follicle stimulating hormone receptor-expressing cells. Molecule MS437 had a TSHR-stimulating potency with an EC50 of 13×10(-8) M, and molecule MS438 had an EC50 of 5.3×10(-8) M. The ability of these small molecule agonists to bind to the transmembrane domain of the receptor and initiate signal transduction was suggested by their activation of a chimeric receptor consisting of an LHR ectodomain and a TSHR transmembrane. Molecular modeling demonstrated that these molecules bound to residues S505 and E506 for MS438 and T501 for MS437 in the intrahelical region of transmembrane helix 3. We also examined the G protein activating ability of these molecules using CHO cells co-expressing TSHRs transfected with luciferase reporter vectors in order to measure Gsα, Gßγ, Gαq, and Gα12 activation quantitatively. The MS437 and MS438 molecules showed potent activation of Gsα, Gαq, and Gα12 similar to TSH, but neither the small molecule agonists nor TSH showed activation of the Gßγ pathway. The small molecules MS437 and MS438 also showed upregulation of thyroglobulin (Tg), sodium iodine symporter (NIS), and TSHR gene expression. CONCLUSIONS: Pharmacokinetic analysis of MS437 and MS438 indicated their pharmacotherapeutic potential, and their intraperitoneal administration to normal female mice resulted in significantly increased serum thyroxine levels, which could be maintained by repeated treatments. These molecules can therefore serve as lead molecules for further development of powerful TSH agonists.


Assuntos
Receptores da Tireotropina/agonistas , Doenças da Glândula Tireoide/tratamento farmacológico , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos
11.
Proc Natl Acad Sci U S A ; 111(50): 17989-94, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25453081

RESUMO

Bisphosphonates are the most commonly prescribed medicines for osteoporosis and skeletal metastases. The drugs have also been shown to reduce cancer progression, but only in certain patient subgroups, suggesting that there is a molecular entity that mediates bisphosphonate action on tumor cells. Using connectivity mapping, we identified human epidermal growth factor receptors (human EGFR or HER) as a potential new molecular entity for bisphosphonate action. Protein thermal shift and cell-free kinase assays, together with computational modeling, demonstrated that N-containing bisphosphonates directly bind to the kinase domain of HER1/2 to cause a global reduction in downstream signaling. By doing so, the drugs kill lung, breast, and colon cancer cells that are driven by activating mutations or overexpression of HER1. Knocking down HER isoforms thus abrogates cell killing by bisphosphonates, establishing complete HER dependence and ruling out a significant role for other receptor tyrosine kinases or the enzyme farnesyl pyrophosphate synthase. Consistent with this finding, colon cancer cells expressing low levels of HER do not respond to bisphosphonates. The results suggest that bisphosphonates can potentially be repurposed for the prevention and therapy of HER family-driven cancers.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Difosfonatos/farmacologia , Receptores ErbB/antagonistas & inibidores , Modelos Moleculares , Anisotropia , Western Blotting , Linhagem Celular Tumoral , Cristalografia , Difosfonatos/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Fluorescência , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Sais de Tetrazólio , Tiazóis
12.
Artigo em Inglês | MEDLINE | ID: mdl-25076938

RESUMO

BACKGROUND: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs). Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT) from malignant cells since EMT is known to confer stem-like characteristics. Furthermore, EMT is a critical process for epithelial tumor progression, local invasion, and metastasis formation. In addition, stemness provides cells with therapeutic resistance and is the likely cause of tumor recurrence. However, the relevance of EMT and stemness in thyroid cancer progression has not been extensively studied. METHODS: To examine the status of stemness in thyroid papillary cancer, we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf((V600E))/TPO-Cre). This construct is only activated at the time of thyroid peroxidase (TPO) expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells, which do not express TPO. RESULTS: There was decreased expression of thyroid-specific genes such as Tg and NIS and increased expression of stemness markers, such as Oct4, Rex1, CD15, and Sox2 in the thyroid carcinoma tissue from 6-week-old BRAF(V600E) mice indicating the dedifferentiated status of the cells and the fact that stemness was derived in this model from differentiated thyroid cells. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-ß1 and TGF-ß3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a cancer thyroid cell line (named Marca cells) derived from one of the murine tumors. In this cell line, we also found that overexpression of Snail caused up-regulation of vimentin expression and up-regulation of stemness markers Oct4, Rex1, and CD15, with enhanced migration ability of the cells. We also showed that TGF-ß1 was able to induce Snail and vimentin expression in the Marca cell thyroid cancer line, indicating the induction of EMT in these cells, and this induction of EMT and stemness was significantly inhibited by celastro a natural inhibitor of neoplastic cells. CONCLUSION: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf((V600E))/TPO-Cre), the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells. Furthermore, celastrol suppressed TGF-ß1 induced EMT in thyroid cancer cells and may have therapeutic potential.

13.
J Clin Endocrinol Metab ; 99(3): E400-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24823711

RESUMO

CONTEXT: Cancer stem cells (CSCs) have the ability to self-renew through symmetric and asymmetric cell division. CSCs may arise from mutations within an embryonic stem cell/progenitor cell population or via epithelial-mesenchymal transition (EMT), and recent advances in the study of thyroid stem cells have led to a growing recognition of the likely central importance of CSCs in thyroid tumorigenesis. OBJECTIVE: The objectives of this study were to establish the presence of a stem cell population in human thyroid tumors and to identify, isolate, and characterize CSCs in thyroid cancer cell lines. RESULTS: 1) Human thyroid cancers (n = 10) and thyroid cancer cell lines (n = 6) contained a stem cell population as evidenced by pluripotent stem cell gene expression. 2) Pulse-chase experiments with thyroid cancer cells identified a label-retaining cell population, a primary characteristic of CSCs, which at mitosis divided their DNA both symmetrically and asymmetrically and included a population of cells expressing the progenitor marker, stage-specific embryonic antigen 1 (SSEA-1). 3) Cells positive for SSEA-1 expressed additional stem cell markers including Oct4, Sox2, and Nanog were confirmed as CSCs by their tumor-initiating properties in vivo, their resistance to chemotherapy, and their multipotent capability. 4) SSEA-1-positive cells showed enhanced vimentin expression and decreased E-cadherin expression, indicating their likely derivation via EMT. CONCLUSIONS: Cellular diversity in thyroid cancer occurs through both symmetric and asymmetric cell division, and SSEA-1-positive cells are one form of CSCs that appear to have arisen via EMT and may be the source of malignant thyroid tumor formation. This would suggest that thyroid cancer CSCs were the result of thyroid cancer transformation rather than the source.


Assuntos
Carcinoma Papilar/patologia , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/patologia , Células-Tronco Pluripotentes/patologia , Neoplasias da Glândula Tireoide/patologia , Animais , Carcinoma Papilar/tratamento farmacológico , Divisão Celular , Polaridade Celular , Separação Celular , Humanos , Antígenos CD15/metabolismo , Masculino , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Células Tumorais Cultivadas
14.
Thyroid ; 24(2): 181-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24295043

RESUMO

BACKGROUND: Goiter, or benign enlargement of the thyroid gland, can be asymptomatic or can cause compression of surrounding structures such as the esophagus and/or trachea. The options for medical treatment of euthyroid goiter are short-lived and are limited to thyroxine hormone suppression and radioactive iodine ablation. The objective of this statement article is to discuss optimal surgical management of goiter. METHODS: A task force was convened by the Surgical Affairs Committee of the American Thyroid Association and was tasked with writing of this article. RESULTS/CONCLUSIONS: Surgical management is recommended for goiters with compressive symptoms. Symptoms of dyspnea, orthopnea, and dysphagia are more commonly associated with thyromegaly, in particular, substernal goiters. Several studies have demonstrated improved breathing and swallowing outcomes after thyroidectomy. With careful preoperative testing and thoughtful consideration of the type of anesthesia, including the type of intubation, preparation for surgery can be optimized. In addition, planning the extent of surgery and postoperative care are necessary to achieve optimal results. Close collaboration of an experienced surgical and anesthesia team is essential for induction and reversal of anesthesia. In addition, this team must be cognizant of complications from massive goiter surgery such as bleeding, airway distress, recurrent laryngeal nerve injury, and transient hypoparathyroidism. With careful preparation and teamwork, successful thyroid surgery can be achieved.


Assuntos
Bócio Nodular/cirurgia , Glândula Tireoide/cirurgia , Bócio Nodular/diagnóstico por imagem , Bócio Subesternal/diagnóstico por imagem , Bócio Subesternal/cirurgia , Humanos , Glândula Tireoide/diagnóstico por imagem , Tireoidectomia/métodos , Ultrassonografia
15.
J Autoimmun ; 47: 17-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23958398

RESUMO

Thyroid stimulating hormone (TSH) activates two major G-protein arms, Gsα and Gq leading to initiation of down-stream signaling cascades for survival, proliferation and production of thyroid hormones. Antibodies to the TSH receptor (TSHR-Abs), found in patients with Graves' disease, may have stimulating, blocking, or neutral actions on the thyroid cell. We have shown previously that such TSHR-Abs are distinct signaling imprints after binding to the TSHR and that such events can have variable functional consequences for the cell. In particular, there is a great contrast between stimulating (S) TSHR-Abs, which induce thyroid hormone synthesis and secretion as well as thyroid cell proliferation, compared to so called "neutral" (N) TSHR-Abs which may induce thyroid cell apoptosis via reactive oxygen species (ROS) generation. In the present study, using a rat thyrocyte (FRTL-5) ex vivo model system, our hypothesis was that while N-TSHR-Abs can induce apoptosis via activation of mitochondrial ROS (mROS), the S-TSHR-Abs are able to stimulate cell survival and avoid apoptosis by actively suppressing mROS. Using fluorescent microscopy, fluorometry, live cell imaging, immunohistochemistry and immunoblot assays, we have observed that S-TSHR-Abs do indeed suppress mROS and cellular stress and this suppression is exerted via activation of the PKA/CREB and AKT/mTOR/S6K signaling cascades. Activation of these signaling cascades, with the suppression of mROS, initiated cell proliferation. In sharp contrast, a failure to activate these signaling cascades with increased activation of mROS induced by N-TSHR-Abs resulted in thyroid cell apoptosis. Our current findings indicated that signaling diversity induced by different TSHR-Abs regulated thyroid cell fate. While S-TSHR-Abs may rescue cells from apoptosis and induce thyrocyte proliferation, N-TSHR-Abs aggravate the local inflammatory infiltrate within the thyroid gland, or in the retro-orbit, by inducing cellular apoptosis; a phenomenon known to activate innate and by-stander immune-reactivity via DNA release from the apoptotic cells.


Assuntos
Apoptose/imunologia , Doença de Graves/imunologia , Imunoglobulinas Estimuladoras da Glândula Tireoide/imunologia , Receptores da Tireotropina/imunologia , Glândula Tireoide/imunologia , Animais , Proteína de Ligação a CREB/metabolismo , Proliferação de Células , Sobrevivência Celular/imunologia , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Mitocôndrias/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores da Tireotropina/agonistas , Receptores da Tireotropina/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/metabolismo , Glândula Tireoide/citologia
16.
Proc Natl Acad Sci U S A ; 110(24): 9891-6, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716650

RESUMO

Clinical data showing correlations between low thyroid-stimulating hormone (TSH) levels and high bone turnover markers, low bone mineral density, and an increased risk of osteoporosis-related fractures are buttressed by mouse genetic and pharmacological studies identifying a direct action of TSH on the skeleton. Here we show that the skeletal actions of TSH deficiency are mediated, in part, through TNFα. Compound mouse mutants generated by genetically deleting the Tnfα gene on a Tshr(-/-) (homozygote) or Tshr(+/-) (heterozygote) background resulted in full rescue of the osteoporosis, low bone formation, and hyperresorption that accompany TSH deficiency. Studies using ex vivo bone marrow cell cultures showed that TSH inhibits and stimulates TNFα production from macrophages and osteoblasts, respectively. TNFα, in turn, stimulates osteoclastogenesis but also enhances the production in bone marrow of a variant TSHß. This locally produced TSH suppresses osteoclast formation in a negative feedback loop. We speculate that TNFα elevations due to low TSH signaling in human hyperthyroidism contribute to the bone loss that has traditionally been attributed solely to high thyroid hormone levels.


Assuntos
Osteogênese , Receptores da Tireotropina/metabolismo , Tireotropina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Densidade Óssea , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Células Cultivadas , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Microscopia de Fluorescência , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Receptores da Tireotropina/genética , Tireotropina/farmacologia , Tireotropina Subunidade beta/metabolismo , Tireotropina Subunidade beta/farmacologia , Fator de Necrose Tumoral alfa/genética
18.
J Clin Endocrinol Metab ; 98(1): E144-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23118423

RESUMO

CONTEXT: Genetic factors play a major role in the etiology of autoimmune thyroid disease (AITD) including Graves' disease (GD) and Hashimoto's thyroiditis (HT). We have previously identified three loci on chromosomes 10q, 12q, and 14q that showed strong linkage with AITD, HT, and GD, respectively. OBJECTIVES: The objective of the study was to identify the AITD susceptibility genes at the 10q, 12q, and 14q loci. DESIGN AND PARTICIPANTS: Three hundred forty North American Caucasian AITD patients and 183 healthy controls were studied. The 10q, 12q, and 14q loci were fine mapped by genotyping densely spaced single-nucleotide polymorphisms (SNPs) using the Illumina GoldenGate genotyping platform. Case control association analyses were performed using the UNPHASED computer package. Associated SNPs were reanalyzed in a replication set consisting of 238 AITD patients and 276 controls. RESULTS: Fine mapping of the AITD locus, 10q, showed replicated association of the AITD phenotype (both GD and HT) with SNP rs6479778. This SNP was located within the ARID5B gene recently reported to be associated with rheumatoid arthritis and GD in Japanese. Fine mapping of the GD locus, 14q, revealed replicated association of the GD phenotype with two markers, rs12147587 and rs2284720, located within the NRXN3 and TSHR genes, respectively. CONCLUSIONS: Fine mapping of three linked loci identified novel susceptibility genes for AITD. The discoveries of new AITD susceptibility genes will engender a new understanding of AITD etiology.


Assuntos
Doenças Autoimunes/genética , Mapeamento Cromossômico/métodos , Loci Gênicos/genética , Predisposição Genética para Doença , Doenças da Glândula Tireoide/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Polimorfismo de Nucleotídeo Único/fisiologia , Receptores da Tireotropina/genética , Receptores da Tireotropina/fisiologia , Tireoidite Autoimune/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Adulto Jovem
19.
PLoS One ; 7(9): e44669, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22957097

RESUMO

Stimulating, and some blocking, antibodies to the TSH receptor (TSHR) have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD). However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs) have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity.


Assuntos
Anticorpos/química , Epitopos/química , Receptores da Tireotropina/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cristalização , Humanos , Leucina/química , Ligantes , Mutagênese , Peptídeos/química , Conformação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
20.
Proc Natl Acad Sci U S A ; 109(36): 14574-9, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22908268

RESUMO

Low estrogen levels undoubtedly underlie menopausal bone thinning. However, rapid and profuse bone loss begins 3 y before the last menstrual period, when serum estrogen is relatively normal. We have shown that the pituitary hormone FSH, the levels of which are high during late perimenopause, directly stimulates bone resorption by osteoclasts. Here, we generated and characterized a polyclonal antibody to a 13-amino-acid-long peptide sequence within the receptor-binding domain of the FSH ß-subunit. We show that the FSH antibody binds FSH specifically and blocks its action on osteoclast formation in vitro. When injected into ovariectomized mice, the FSH antibody attenuates bone loss significantly not only by inhibiting bone resorption, but also by stimulating bone formation, a yet uncharacterized action of FSH that we report herein. Mesenchymal cells isolated from mice treated with the FSH antibody show greater osteoblast precursor colony counts, similarly to mesenchymal cells isolated from FSH receptor (FSHR)(-/-) mice. This suggests that FSH negatively regulates osteoblast number. We confirm that this action is mediated by signaling-efficient FSHRs present on mesenchymal stem cells. Overall, the data prompt the future development of an FSH-blocking agent as a means of uncoupling bone formation and bone resorption to a therapeutic advantage in humans.


Assuntos
Anticorpos/metabolismo , Desenvolvimento Ósseo/fisiologia , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoporose Pós-Menopausa/prevenção & controle , Animais , Anticorpos/farmacologia , Desenvolvimento Ósseo/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Feminino , Subunidade beta do Hormônio Folículoestimulante/imunologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Osteoclastos/citologia , Ovariectomia , Receptores do FSH/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA