Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Clin Cancer Res ; 29(7): 1209-1219, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36378549

RESUMO

PURPOSE: A phase Ib/II clinical trial was conducted to evaluate the safety and efficacy of the combination of all-trans retinoic acid (ATRA) with pembrolizumab in patients with stage IV melanoma. PATIENTS AND METHODS: Anti-PD-1 naïve patients with stage IV melanoma were treated with pembrolizumab plus supplemental ATRA for three days surrounding each of the first four pembrolizumab infusions. The primary objective was to establish the MTD and recommended phase II dose (RP2D) of the combination. The secondary objectives were to describe the safety and toxicity of the combined treatment and to assess antitumor activity in terms of (i) the reduction in circulating myeloid-derived suppressor cell (MDSC) frequency and (ii) progression-free survival (PFS). RESULTS: Twenty-four patients were enrolled, 46% diagnosed with M1a and 29% with M1c stage disease at enrollment. All patients had an ECOG status ≤1, and 75% had received no prior therapies. The combination was well tolerated, with the most common ATRA-related adverse events being headache, fatigue, and nausea. The RP2D was established at 150 mg/m2 ATRA + 200 mg Q3W pembrolizumab. Median PFS was 20.3 months, and the overall response rate was 71%, with 50% of patients experiencing a complete response, and the 1-year overall survival was 80%. The combination effectively lowered the frequency of circulating MDSCs. CONCLUSIONS: With a favorable tolerability and high response rate, this combination is a promising frontline treatment strategy for advanced melanoma. Targeting MDSCs remains an attractive mechanism to enhance the efficacy of immunotherapies, and this combination merits further investigation. See related commentary by Olson and Luke, p. 1167.


Assuntos
Melanoma , Células Supressoras Mieloides , Segunda Neoplasia Primária , Humanos , Células Supressoras Mieloides/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Melanoma/patologia , Tretinoína/efeitos adversos , Segunda Neoplasia Primária/tratamento farmacológico
2.
Mol Cancer Ther ; 21(4): 647-657, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35373300

RESUMO

High-grade serous ovarian cancer is the deadliest gynecologic malignancy due to progression to resistant disease. Claudin-4 is classically defined as a tight junction protein and is often associated with epithelial cancers. Claudin-4 is aberrantly expressed in nearly 70% of all ovarian cancer tumors and conveys a worse overall prognosis. Elevated claudin-4 expression correlates to increased DNA repair activity and resistance to DNA damaging agents. PARP inhibitors are emerging as an effective therapeutic option for patients with ovarian cancer and function by promoting DNA damage. The study examines the relationship between claudin-4 expression and the response to PARP inhibitors using both genetic and pharmacologic inhibition of claudin-4 in in vitro and ex vivo models of ovarian cancer to examine DNA repair markers and functional activity. Genetic inhibition of claudin-4 results in the downregulation of several DNA damage repair effectors, including 53BP1 and XRCC1. Claudin-4 knockdown did not change homology-directed repair but inhibited nonhomologous end-joining and reduced 53BP1 foci formation. In 15 primary ovarian cancer tumors, higher claudin-4 expression significantly correlated to a dampened PARP inhibitor-mediated antiproliferation response. Further, claudin-4 inhibition in high claudin-4 tumors sensitized tumor sections to PARP inhibition. These data highlight that claudin-4 expression in ovarian cancer tumors could serve as both a marker of PARP inhibitor response and a therapeutic target to improve PARP inhibitor response.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Claudina-4/genética , Dano ao DNA , Reparo do DNA , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
3.
Clin Transl Immunology ; 11(1): e1367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35028137

RESUMO

OBJECTIVES: While much of the research concerning factors associated with responses to immune checkpoint inhibitors (ICIs) has focussed on the contributions of conventional peptide-specific T cells, the role of unconventional T cells, such as mucosal-associated invariant T (MAIT) cells, in human melanoma remains largely unknown. MAIT cells are an abundant population of innate-like T cells expressing a semi-invariant T-cell receptor restricted to the MHC class I-like molecule, MR1, presenting vitamin B metabolites derived from bacteria. We sought to characterise MAIT cells in melanoma patients and determined their association with treatment responses and clinical outcomes. METHODS: In this prospective clinical study, we analysed the frequency and functional profile of circulating and tumor-infiltrating MAIT cells in human melanoma patients. Using flow cytometry, we compared these across metastatic sites and between ICI responders vs. non-responders as well as healthy donors. RESULTS: We identified tumor-infiltrating MAIT cells in melanomas across metastatic sites and found that the number of circulating MAIT cells is reduced in melanoma patients compared to healthy donors. However, circulating MAIT cell frequencies are restored by ICI treatment in responding patients, correlating with treatment responses, in which patients with high frequencies of MAIT cells exhibited significantly improved overall survival. CONCLUSION: Our results suggest that MAIT cells may be a potential predictive marker of responses to immunotherapies and provide rationale for testing MAIT cell-directed therapies in combination with current and next-generation ICIs.

4.
Cell Death Differ ; 29(1): 118-132, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34413485

RESUMO

The mitochondrial calcium uniporter (MCU) regulates metabolic reprogramming in lung macrophages and the progression of pulmonary fibrosis. Fibrosis progression is associated with apoptosis resistance in lung macrophages; however, the mechanism(s) by which apoptosis resistance occurs is poorly understood. Here, we found a marked increase in mitochondrial B-cell lymphoma-2 (Bcl-2) in lung macrophages from subjects with idiopathic pulmonary fibrosis (IPF). Similar findings were seen in bleomycin-injured wild-type (WT) mice, whereas Bcl-2 was markedly decreased in mice expressing a dominant-negative mitochondrial calcium uniporter (DN-MCU). Carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme for fatty acid ß-oxidation, directly interacted with Bcl-2 by binding to its BH3 domain, which anchored Bcl-2 in the mitochondria to attenuate apoptosis. This interaction was dependent on Cpt1a activity. Lung macrophages from IPF subjects had a direct correlation between CPT1A and Bcl-2, whereas the absence of binding induced apoptosis. The deletion of Bcl-2 in macrophages protected mice from developing pulmonary fibrosis. Moreover, mice had resolution when Bcl-2 was deleted or was inhibited with ABT-199 after fibrosis was established. These observations implicate an interplay between macrophage fatty acid ß-oxidation, apoptosis resistance, and dysregulated fibrotic remodeling.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Apoptose , Bleomicina , Fibrose , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Macrófagos Alveolares , Camundongos
5.
Immunohorizons ; 4(2): 82-92, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071067

RESUMO

Although the consequences of splenectomy are well understood in mice, much less is known about the immunologic changes that occur following splenectomy in humans. We sought to characterize the circulating immune cell populations of patients before and after elective splenectomy to determine if these changes are related to postsplenectomy survival outcomes. Retrospective clinical information was collected from 95 patients undergoing elective splenectomy compared with 91 patients undergoing pancreaticoduodenectomy (Whipple procedure). We further analyzed peripheral blood from five patients in the splenectomy group, collected before and after surgery, using single-cell cytometry by time-of-flight mass spectrometry. We compared pre- and postsplenectomy data to characterize both the major and minor immune cell populations in significantly greater detail. Compared with patients undergoing a Whipple procedure, splenectomized patients had significant and long-lasting elevated counts of lymphocytes, monocytes, and basophils. Cytometry by time-of-flight mass spectroscopy analysis demonstrated that the elevated lymphocytes primarily consisted of naive CD4+ T cells and a population of activated CD25+CD56+CD4+ T cells, whereas the elevated monocyte counts were mainly mature, activated monocytes. We also observed a significant increase in the expression of the chemokine receptors CCR6 and CCR4 on several cellular populations. Taken together, these data indicate that significant immunological changes take place following splenectomy. Whereas other groups have compared splenectomized patients to healthy controls, this study compared patients undergoing elective splenectomy to those undergoing a similar major abdominal surgery. Overall, we found that splenectomy results in significant long-lasting changes in circulating immune cell populations and function.


Assuntos
Esplenectomia/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Basófilos/metabolismo , Basófilos/patologia , Biomarcadores/metabolismo , Feminino , Humanos , Contagem de Leucócitos , Subpopulações de Linfócitos/metabolismo , Subpopulações de Linfócitos/patologia , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Monócitos/patologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Pancreaticoduodenectomia/efeitos adversos , Pancreaticoduodenectomia/mortalidade , Contagem de Plaquetas , Período Pós-Operatório , Receptores CCR/metabolismo , Estudos Retrospectivos , Esplenectomia/mortalidade , Análise de Sobrevida
6.
Front Oncol ; 9: 1223, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781510

RESUMO

We sought to identify tumor-secreted factors that altered the frequency of MDSCs and correlated with clinical outcomes in advanced melanoma patients. We focused our study on several of the many factors involved in the expansion and mobilization of MDSCs. These were identified by measuring circulating concentrations of 13 cytokines and growth factors in stage IV melanoma patients (n = 55) and healthy controls (n = 22). Based on these results, we hypothesized that IL-6 and IL-8 produced by melanoma tumor cells participate in the expansion and recruitment of MDSCs and together would be predictive of overall survival in melanoma patients. We then compared the expression of IL-6 and IL-8 in melanoma tumors to the corresponding plasma concentrations and the frequency of circulating MDSCs. These measures were correlated with clinical outcomes. Patients with high plasma concentrations of either IL-6 (40%) or IL-8 (63%), or both (35%) had worse median overall survival compared to patients with low concentrations. Patients with low peripheral concentrations and low tumoral expression of IL-6 and IL-8 showed decreased frequencies of circulating MDSCs, and patients with low frequencies of MDSCs had better overall survival. We have previously shown that IL-6 is capable of expanding MDSCs, and here we show that MDSCs are chemoattracted to IL-8. Multivariate analysis demonstrated an increased risk of death for subjects with both high IL-6 and IL-8 (HR 3.059) and high MDSCs (HR 4.265). Together these results indicate an important role for IL-6 and IL-8 in melanoma patients in which IL-6 potentially expands peripheral MDSCs and IL-8 recruits these highly immunosuppressive cells to the tumor microenvironment. This study provides further support for identifying potential therapeutics targeting IL-6, IL-8, and MDSCs to improve melanoma treatments.

7.
J Clin Invest ; 129(11): 4962-4978, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31609245

RESUMO

Macrophages are important in mounting an innate immune response to injury as well as in repair of injury. Gene expression of Rho proteins is known to be increased in fibrotic models; however, the role of these proteins in idiopathic pulmonary fibrosis (IPF) is not known. Here, we show that BAL cells from patients with IPF have a profibrotic phenotype secondary to increased activation of the small GTPase Rac1. Rac1 activation requires a posttranslational modification, geranylgeranylation, of the C-terminal cysteine residue. We found that by supplying more substrate for geranylgeranylation, Rac1 activation was substantially increased, resulting in profibrotic polarization by increasing flux through the mevalonate pathway. The increased flux was secondary to greater levels of acetyl-CoA from metabolic reprogramming to ß oxidation. The polarization mediated fibrotic repair in the absence of injury by enhancing macrophage/fibroblast signaling. These observations suggest that targeting the mevalonate pathway may abrogate the role of macrophages in dysregulated fibrotic repair.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Macrófagos/metabolismo , Ácido Mevalônico/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Adolescente , Adulto , Idoso , Animais , Feminino , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Oxirredução , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
JCI Insight ; 4(16)2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31434799

RESUMO

Macrophage activation is implicated in the development of pulmonary fibrosis by generation of profibrotic molecules. Although NADPH oxidase 4 (NOX4) is known to contribute to pulmonary fibrosis, its effects on macrophage activation and mitochondrial redox signaling are unclear. Here, we show that NOX4 is crucial for lung macrophage profibrotic polarization and fibrotic repair after asbestos exposure. NOX4 was elevated in lung macrophages from subjects with asbestosis, and mice harboring a deletion of NOX4 in lung macrophages were protected from asbestos-induced fibrosis. NOX4 promoted lung macrophage profibrotic polarization and increased production of profibrotic molecules that induce collagen deposition. Mechanistically, NOX4 further augmented mitochondrial ROS production and induced mitochondrial biogenesis. Targeting redox signaling and mitochondrial biogenesis prevented the profibrotic polarization of lung macrophages by reducing the production of profibrotic molecules. These observations provide evidence that macrophage NOX4 is a potentially novel therapeutic target to halt the development of asbestos-induced pulmonary fibrosis.


Assuntos
Asbestose/metabolismo , Macrófagos Alveolares/fisiologia , Macrófagos/fisiologia , NADPH Oxidase 4/metabolismo , Biogênese de Organelas , Adulto , Idoso , Animais , Linhagem Celular , Polaridade Celular , Feminino , Fibrose , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
9.
Int Immunopharmacol ; 63: 282-291, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30121453

RESUMO

BACKGROUND: Immune checkpoint inhibitors have improved overall survival rates for many cancers, yet the majority of patients do not respond to treatment and succumb to disease progression. One tumor-related mechanism limiting the efficacy of immunotherapies in melanoma is the recruitment and expansion of myeloid-derived suppressor cells (MDSCs). Therefore, targeting MDSCs in combination with immunotherapies is an attractive strategy to improve response rates and effectiveness. METHODS: We tested this strategy by designing a randomized phase II clinical trial treating advanced melanoma patients with either Ipilimumab monotherapy or Ipilimumab plus all-trans retinoic acid (ATRA). Clinicaltrails.gov identifier (NCT02403778). The frequency of circulating MDSCs and the activation of CD8(+) T cells was measured by flow cytometry. Expression of immunosuppressive genes was measured with quantitative real time-PCR. T cell suppressive functions were measured by mixed lymphocyte reaction. RESULTS: Here we show that in vitro treatment with ATRA decreases immunosuppressive function of MDSCs in mixed lymphocyte reactions. Additionally, ATRA reduces the expression of immunosuppressive genes including PD-L1, IL-10, and indoleamine 2,3­dioxygenase by MDSCs. Furthermore, the addition of ATRA to standard of care Ipilimumab therapy appears safe, as ATRA did not increase the frequency of grade 3 or 4 adverse events. Finally, ATRA significantly decreased the frequency of circulating MDSCs compared to Ipilimumab treatment alone in advanced-stage melanoma patients. CONCLUSIONS: These results illustrate the importance of MDSCs in immunotherapy resistance and provide evidence that targeting MDSCs in cancer patients may augment immunotherapeutic approaches.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ipilimumab/uso terapêutico , Melanoma/tratamento farmacológico , Células Supressoras Mieloides/efeitos dos fármacos , Tretinoína/uso terapêutico , Adulto , Idoso , Antineoplásicos Imunológicos/farmacologia , Feminino , Humanos , Ipilimumab/farmacologia , Masculino , Melanoma/imunologia , Pessoa de Meia-Idade , Células Supressoras Mieloides/imunologia , Tretinoína/farmacologia
10.
Am J Respir Crit Care Med ; 198(10): 1288-1301, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29897791

RESUMO

RATIONALE: Cigarette smoking is prevalent in the United States and is the leading cause of preventable diseases. A prominent complication of smoking is an increase in lower respiratory tract infections (LRTIs). Although LRTIs are known to be increased in subjects that smoke, the mechanism(s) by which this occurs is poorly understood. OBJECTIVES: Determine how cigarette smoke (CS) reduces reactive oxygen species (ROS) production by the phagocytic NOX2 (NADPH oxidase 2), which is essential for innate immunity in lung macrophages. METHODS: NOX2-derived ROS and Rac2 (Ras-related C3 botulinum toxin substrate 2) activity were determined in BAL cells from wild-type and Rac2-/- mice exposed to CS or cadmium and in BAL cells from subjects that smoke. Host defense to respiratory pathogens was analyzed in mice infected with Streptococcus pneumoniae. MEASUREMENTS AND MAIN RESULTS: NOX2-derived ROS in BAL cells was reduced in mice exposed to CS via inhibition of the small GTPase Rac2. These mice had greater bacterial burden and increased mortality compared with air-exposed mice. BAL fluid from CS-exposed mice had increased levels of cadmium, which mediated the effect on Rac2. Similar observations were seen in human subjects that smoke. To support the importance of Rac2 in the macrophage immune response, overexpression of constitutively active Rac2 by lentiviral administration increased NOX2-derived ROS, decreased bacterial burden in lung tissue, and increased survival compared with CS-exposed control mice. CONCLUSIONS: These observations suggest that therapies to maintain Rac2 activity in lung macrophages restore host defense against respiratory pathogens and diminish the prevalence of LRTIs in subjects that smoke.


Assuntos
Fumar Cigarros/efeitos adversos , Fumar Cigarros/imunologia , Pneumonia/etiologia , Pneumonia/imunologia , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata/imunologia , Pulmão/imunologia , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/imunologia , Índice de Gravidade de Doença , Proteína RAC2 de Ligação ao GTP
11.
J Leukoc Biol ; 102(2): 381-391, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179538

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that represent a formidable obstacle to the successful treatment of cancer. Patients with high frequencies of MDSCs have significantly decreased progression-free survival (PFS) and overall survival (OS). Whereas there is experimental evidence that the reduction of the number and/or suppressive function of MDSCs in mice improves the efficacy of anti-cancer therapies, there is notably less evidence for this therapeutic strategy in human clinical trials. Here, we discuss currently available data concerning MDSCs from human clinical trials and explore the evidence that targeting MDSCs may improve the efficacy of cancer therapies.


Assuntos
Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Evasão Tumoral/imunologia , Humanos
12.
PLoS One ; 11(4): e0153165, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27088599

RESUMO

The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage.


Assuntos
Candida albicans/patogenicidade , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Candida albicans/genética , Candida albicans/fisiologia , Linhagem Celular , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Proteínas Fúngicas/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Inflamação/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação
13.
Eukaryot Cell ; 9(8): 1203-15, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20581294

RESUMO

Candida albicans is an opportunistic pathogen that colonizes diverse mucosal niches with distinct environmental characteristics. To adapt to these different sites, C. albicans must activate and attenuate a variety of signal transduction pathways. A mechanism of signal attenuation is through receptor endocytosis and subsequent vacuolar degradation, which requires the endosomal sorting complex required for transport (ESCRT) pathway. This pathway comprises several polyprotein complexes (ESCRT-0, -I, -II, -III, and -DS) that are sequentially recruited to the endosomal membrane. The ESCRT pathway also activates the Rim101 transcription factor, which governs expression of genes required for virulence. Here, we tested the hypothesis that the ESCRT pathway plays a Rim101-independent role(s) in pathogenesis. We generated deletion mutants in each ESCRT complex and determined that ESCRT-I, -II, and -III are required for Rim101 activation but that ESCRT-0 and ESCRT-DS are not. We found that the ESCRT-0 member Vps27 and ESCRT-DS components are required to promote epithelial cell damage and, using a murine model of oral candidiasis, found that the vps27Delta/Delta mutant had a decreased fungal burden compared to that of the wild type. We found that a high-dose inoculum can compensate for fungal burden defects but that mice colonized with the vps27Delta/Delta strain exhibit less morbidity than do mice infected with the wild-type strain. These results demonstrate that the ESCRT pathway has Rim101-independent functions for C. albicans virulence.


Assuntos
Candida albicans/metabolismo , Candida albicans/patogenicidade , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Animais , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candidíase/microbiologia , Candidíase/patologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Genótipo , Ferro/farmacologia , Camundongos , Modelos Biológicos , Mutação/genética , Fenótipo , Reação em Cadeia da Polimerase , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
14.
Eukaryot Cell ; 7(7): 1168-79, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18503007

RESUMO

Iron is an essential nutrient that is severely limited in the mammalian host. Candida albicans encodes a family of 15 putative ferric reductases, which are required for iron acquisition and utilization. Despite the central role of ferric reductases in iron acquisition and mobilization, relatively little is known about the regulatory networks that govern ferric reductase gene expression in C. albicans. Here we have demonstrated the differential regulation of two ferric reductases, FRE2 and FRP1, in response to distinct iron-limited environments. FRE2 and FRP1 are both induced in alkaline-pH environments directly by the Rim101 transcription factor. However, FRP1 but not FRE2 is also induced by iron chelation. We have identified a CCAAT motif as the critical regulatory sequence for chelator-mediated induction and have found that the CCAAT binding factor (CBF) is essential for FRP1 expression in iron-limited environments. We found that a hap5Delta/hap5Delta mutant, which disrupts the core DNA binding activity of CBF, is unable to grow under iron-limited conditions. C. albicans encodes three CBF-dependent transcription factors, and we identified the Hap43 protein as the CBF-dependent transcription factor required for iron-limited responses. These studies provide key insights into the regulation of ferric reductase gene expression in the fungal pathogen C. albicans.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Candida albicans/metabolismo , FMN Redutase/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Motivos de Aminoácidos , Fator de Ligação a CCAAT/genética , Candida albicans/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , FMN Redutase/genética , Proteínas Fúngicas/genética , Regiões Promotoras Genéticas , Ativação Transcricional
15.
Microbiology (Reading) ; 151(Pt 5): 1631-1644, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15870471

RESUMO

Yeast wall protein 1 (Ywp1, also called Pga24) of Candida albicans is predicted to be a 533 aa polypeptide with an N-terminal secretion signal, a C-terminal glycosylphosphatidylinositol anchor signal and a central region rich in serine and threonine. In yeast cultures, Ywp1p appeared to be linked covalently to glucans of the wall matrix, but, as cultures approached stationary phase, Ywp1p accumulated in the medium and was extractable from cells with disulfide-reducing agents. An 11 kDa propeptide of Ywp1p was also present in these soluble fractions; it possessed the sole N-glycan of Ywp1p and served as a useful marker for Ywp1p. DNA vaccines encoding all or part of Ywp1p generated analytically useful antisera in mice, but did not increase survival times for disseminated candidiasis. Replacement of the coding sequence of YWP1 with the fluorescent reporter GFP revealed that expression of YWP1 is greatest during yeast exponential-phase growth, but downregulated in stationary phase and upon filamentation. Expression was upregulated when the extracellular phosphate concentration was low. Disruption by homologous recombination of both YWP1 alleles resulted in no obvious change in growth, morphology or virulence, but the Ywp1p-deficient blastoconidia exhibited increased adhesiveness and biofilm formation, suggesting that Ywp1p may promote dispersal of yeast forms of C. albicans.


Assuntos
Parede Celular/química , Sequência de Aminoácidos , Animais , Anticorpos Antifúngicos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida albicans/patogenicidade , Candidíase/microbiologia , Candidíase/patologia , Candidíase/prevenção & controle , Adesão Celular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/imunologia , Regulação Fúngica da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Análise de Sequência de DNA , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Virulência
16.
Bioorg Med Chem Lett ; 15(5): 1529-34, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15713422

RESUMO

The synthesis of a series of highly potent and selective inhibitors of cathepsin K based on the 3,4-disubstituted azetidin-2-one warhead is reported. A high degree of potency and selectivity was achieved by introducing a basic nitrogen into the distal part of the P3 element of the molecule. Data from kinetic and mass spectrometry experiments are consistent with the interpretation that compounds of this series transiently acylate the sulfhydrile of cathepsin K.


Assuntos
Azetidinas/farmacologia , Catepsinas/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Azetidinas/síntese química , Azetidinas/química , Catepsina K , Catepsinas/química , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Avaliação Pré-Clínica de Medicamentos , Cinética , Estrutura Molecular , Relação Estrutura-Atividade
17.
Eukaryot Cell ; 3(3): 741-51, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15189995

RESUMO

Candida albicans is an important commensal of mucosal surfaces that is also an opportunistic pathogen. This organism colonizes a wide range of host sites that differ in pH; thus, it must respond appropriately to this environmental stress to survive. The ability to respond to neutral-to-alkaline pHs is governed in part by the RIM101 signal transduction pathway. Here we describe the analysis of C. albicans Rim13p, a homolog of the Rim13p/PalB calpain-like protease member of the RIM101/pacC pathway from Saccharomyces cerevisiae and Aspergillus nidulans, respectively. RIM13, like other members of the RIM101 pathway, is required for alkaline pH-induced filamentation and growth under extreme alkaline conditions. Further, our studies suggest that the RIM101 pathway promotes pH-independent responses, including resistance to high concentrations of lithium and to the drug hygromycin B. RIM13 encodes a calpain-like protease, and we found that Rim101p undergoes a Rim13p-dependent C-terminal proteolytic processing event at neutral-to-alkaline pHs, similar to that reported for S. cerevisiae Rim101p and A. nidulans PacC. However, we present evidence that suggests that C. albicans Rim101p undergoes a novel processing event at acidic pHs that has not been reported in either S. cerevisiae or A. nidulans. Thus, our results provide a framework to understand how the C. albicans Rim101p processing pathway promotes alkaline pH-independent processes.


Assuntos
Candida albicans/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/metabolismo , Proteínas Fúngicas/metabolismo , Transdução de Sinais/fisiologia , Aspergillus nidulans/genética , Candida albicans/genética , Clonagem Molecular , Cisteína Endopeptidases/genética , Primers do DNA/genética , Proteínas de Ligação a DNA/genética , Endopeptidases/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
18.
Bioorg Med Chem Lett ; 13(12): 2051-3, 2003 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-12781193

RESUMO

A novel series of 3,4-disubstituted azetidinones based inhibitors of the cysteine protease cathepsin K (Cat K) has been identified. Although not optimized, some of these compounds show at least 100-fold selectivity against other cathepsins. The use of cyclic moieties as P2 elements has proven to be crucial to achieve a high degree of selectivity.


Assuntos
Azetidinas/química , Azetidinas/farmacologia , Catepsinas/antagonistas & inibidores , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Azetidinas/síntese química , Catepsina K , Inibidores de Cisteína Proteinase/síntese química , Isomerismo , Cinética , Piperazinas/química , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA