Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 35(3): 109020, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33852916

RESUMO

COVID-19, caused by the novel coronavirus SARS-CoV-2, is a global health issue with more than 2 million fatalities to date. Viral replication is shaped by the cellular microenvironment, and one important factor to consider is oxygen tension, in which hypoxia inducible factor (HIF) regulates transcriptional responses to hypoxia. SARS-CoV-2 primarily infects cells of the respiratory tract, entering via its spike glycoprotein binding to angiotensin-converting enzyme 2 (ACE2). We demonstrate that hypoxia and the HIF prolyl hydroxylase inhibitor Roxadustat reduce ACE2 expression and inhibit SARS-CoV-2 entry and replication in lung epithelial cells via an HIF-1α-dependent pathway. Hypoxia and Roxadustat inhibit SARS-CoV-2 RNA replication, showing that post-entry steps in the viral life cycle are oxygen sensitive. This study highlights the importance of HIF signaling in regulating multiple aspects of SARS-CoV-2 infection and raises the potential use of HIF prolyl hydroxylase inhibitors in the prevention or treatment of COVID-19.


Assuntos
COVID-19/metabolismo , Células Epiteliais/metabolismo , Glicina/análogos & derivados , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoquinolinas/farmacologia , Pulmão/metabolismo , SARS-CoV-2/fisiologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , COVID-19/patologia , Células CACO-2 , Hipóxia Celular/efeitos dos fármacos , Chlorocebus aethiops , Células Epiteliais/virologia , Glicina/farmacologia , Humanos , Pulmão/virologia , Camundongos , Células Vero , Tratamento Farmacológico da COVID-19
2.
Open Biol ; 10(12): 200320, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33352061

RESUMO

The human immunodeficiency virus type 1 (HIV-1) proteome is expressed from alternatively spliced and unspliced genomic RNAs. However, HIV-1 RNAs that are not fully spliced are perceived by the host machinery as defective and are retained in the nucleus. During late infection, HIV-1 bypasses this regulatory mechanism by expression of the Rev protein from a fully spliced mRNA. Once imported into the nucleus, Rev mediates the export of unprocessed HIV-1 RNAs to the cytoplasm, leading to the production of the viral progeny. While regarded as a canonical RNA export factor, Rev has also been linked to HIV-1 RNA translation, stabilization, splicing and packaging. However, Rev's functions beyond RNA export have remained poorly understood. Here, we revisit this paradigmatic protein, reviewing recent data investigating its structure and function. We conclude by asking: what remains unknown about this enigmatic viral protein?


Assuntos
Infecções por HIV/virologia , HIV/fisiologia , Animais , Descoberta de Drogas , Regulação Viral da Expressão Gênica , Produtos do Gene rev/química , Produtos do Gene rev/genética , Produtos do Gene rev/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Relação Estrutura-Atividade , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
3.
Cell ; 182(2): 515-530.e17, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32610083

RESUMO

Imaging of biological matter across resolution scales entails the challenge of preserving the direct and unambiguous correlation of subject features from the macroscopic to the microscopic level. Here, we present a correlative imaging platform developed specifically for imaging cells in 3D under cryogenic conditions by using X-rays and visible light. Rapid cryo-preservation of biological specimens is the current gold standard in sample preparation for ultrastructural analysis in X-ray imaging. However, cryogenic fluorescence localization methods are, in their majority, diffraction-limited and fail to deliver matching resolution. We addressed this technological gap by developing an integrated, user-friendly platform for 3D correlative imaging of cells in vitreous ice by using super-resolution structured illumination microscopy in conjunction with soft X-ray tomography. The power of this approach is demonstrated by studying the process of reovirus release from intracellular vesicles during the early stages of infection and identifying intracellular virus-induced structures.


Assuntos
Microscopia Crioeletrônica/métodos , Reoviridae/fisiologia , Linhagem Celular Tumoral , Microscopia Crioeletrônica/instrumentação , Endossomos/metabolismo , Endossomos/virologia , Corantes Fluorescentes/química , Humanos , Imageamento Tridimensional , Microscopia de Fluorescência , Reoviridae/química , Liberação de Vírus/fisiologia
4.
Mol Cell ; 74(1): 196-211.e11, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30799147

RESUMO

The compendium of RNA-binding proteins (RBPs) has been greatly expanded by the development of RNA-interactome capture (RIC). However, it remained unknown if the complement of RBPs changes in response to environmental perturbations and whether these rearrangements are important. To answer these questions, we developed "comparative RIC" and applied it to cells challenged with an RNA virus called sindbis (SINV). Over 200 RBPs display differential interaction with RNA upon SINV infection. These alterations are mainly driven by the loss of cellular mRNAs and the emergence of viral RNA. RBPs stimulated by the infection redistribute to viral replication factories and regulate the capacity of the virus to infect. For example, ablation of XRN1 causes cells to be refractory to SINV, while GEMIN5 moonlights as a regulator of SINV gene expression. In summary, RNA availability controls RBP localization and function in SINV-infected cells.


Assuntos
Células Epiteliais/virologia , Perfilação da Expressão Gênica/métodos , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Sindbis virus/genética , Transcriptoma , Neoplasias do Colo do Útero/virologia , Regiões 5' não Traduzidas , Sítios de Ligação , Células Epiteliais/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Feminino , Regulação Viral da Expressão Gênica , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN , Sindbis virus/crescimento & desenvolvimento , Sindbis virus/metabolismo , Sindbis virus/patogenicidade , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Replicação Viral
5.
Curr Opin Genet Dev ; 48: 112-120, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29216518

RESUMO

Cancer development involves the stepwise accumulation of genetic lesions that overcome the normal regulatory pathways that prevent unconstrained cell division and tissue growth. Identification of the genetic changes that cause cancer has long been the subject of intensive study, leading to the identification of several RNA-binding proteins (RBPs) linked to cancer. Cross-reference of the complement of RBPs recently identified by RNA interactome capture with cancer-associated genes and biological processes led to the identification of a set of 411 proteins with potential implications in cancer biology. These involve a broad spectrum of cellular processes including response to stress, metabolism and cell adhesion. Future studies should aim to understand these proteins and their connection to cancer from an RNA-centred perspective, holding the promise of new mechanistic understanding of cancer formation and novel approaches to diagnosis and treatment.


Assuntos
Neoplasias/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Carcinogênese , Humanos , Neoplasias/metabolismo , Proteínas de Ligação a RNA/genética
6.
PLoS One ; 8(7): e69978, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894566

RESUMO

In the Drosophila oocyte, gurken (grk) mRNA encodes a secreted TGF-α signal that specifies the future embryonic dorso-ventral axes by altering the fate of the surrounding epithelial follicle cells. We previously identified a number of RNA binding proteins that associate specifically with the 64 nucleotide grk localization signal, including the Drosophila orthologue of polypyrimidine tract-binding protein (PTB), Hephaestus (Heph). To test whether Heph is required for correct grk mRNA or protein function, we used immunoprecipitation to validate the association of Heph with grk mRNA and characterized the heph mutant phenotype. We found that Heph is a component of grk mRNP complexes but heph germline clones show that Heph is not required for grk mRNA localization. Instead, we identify a novel function for Heph in the germline and show that it is required for proper Grk protein localization. Furthermore, we show that Heph is required in the oocyte for the correct organization of the actin cytoskeleton and dorsal appendage morphogenesis. Our results highlight a requirement for an mRNA binding protein in the localization of Grk protein, which is independent of mRNA localization, and we propose that Heph is required in the germline for efficient Grk signalling to the somatic follicle cells during dorso-ventral patterning.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Padronização Corporal , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Mutação , Oócitos/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo
7.
Cold Spring Harb Protoc ; 2010(4): pdb.prot5404, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20360358

RESUMO

Drosophila plasmatocytes, also known as macrophages, are part of the Drosophila innate immune system and also have roles during development. In late-stage embryos, it is possible to image macrophage migration in situ during development and when they converge at sites of wounding. This protocol describes the isolation of macrophages from third instar Drosophila larvae. The macrophages can be cultured for several hours, and fluorescently labeled macrophages can be screened using a fluorescence-imaging system.


Assuntos
Separação Celular/métodos , Drosophila/imunologia , Macrófagos , Animais , Programas de Rastreamento , Microscopia de Fluorescência , Coloração e Rotulagem
8.
Development ; 137(1): 169-76, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20023172

RESUMO

Localization of bicoid mRNA to the anterior of the Drosophila oocyte is essential for patterning the anteroposterior body axis in the early embryo. bicoid mRNA localizes in a complex multistep process involving transacting factors, molecular motors and cytoskeletal components that remodel extensively during the lifetime of the mRNA. Genetic requirements for several localization factors, including Swallow and Staufen, are well established, but the precise roles of these factors and their relationship to bicoid mRNA transport particles remains unresolved. Here we use live cell imaging, super-resolution microscopy in fixed cells and immunoelectron microscopy on ultrathin frozen sections to study the distribution of Swallow, Staufen, actin and dynein relative to bicoid mRNA during late oogenesis. We show that Swallow and bicoid mRNA are transported independently and are not colocalized at their final destination. Furthermore, Swallow is not required for bicoid transport. Instead, Swallow localizes to the oocyte plasma membrane, in close proximity to actin filaments, and we present evidence that Swallow functions during the late phase of bicoid localization by regulating the actin cytoskeleton. In contrast, Staufen, dynein and bicoid mRNA form nonmembranous, electron dense particles at the oocyte anterior. Our results exclude a role for Swallow in linking bicoid mRNA to the dynein motor. Instead we propose a model for bicoid mRNA localization in which Swallow is transported independently by dynein and contributes indirectly to bicoid mRNA localization by organizing the cytoskeleton, whereas Staufen plays a direct role in dynein-dependent bicoid mRNA transport.


Assuntos
Actinas/fisiologia , Proteínas de Drosophila/fisiologia , Dineínas/fisiologia , Proteínas de Homeodomínio/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Transativadores/genética , Actinas/genética , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Oócitos/metabolismo , Oócitos/ultraestrutura , Oogênese/genética , Oogênese/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Curr Biol ; 17(21): 1871-8, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17964161

RESUMO

In Drosophila, the body axes are specified during oogenesis through interactions between the germline and the overlying somatic follicle cells [1-5]. A Gurken/TGF-alpha signal from the oocyte to the adjacent follicle cells assigns them a posterior identity [6, 7]. These posterior cells then signal back to the oocyte, thereby inducing the repolarization of the microtubule cytoskeleton, the migration of the oocyte nucleus, and the localization of the axis specifying mRNAs [8-10]. However, little is known about the signaling pathways within or from the follicle cells responsible for these patterning events. We show that the Salvador Warts Hippo (SWH) tumor-suppressor pathway is required in the follicle cells in order to induce their Gurken- and Notch-dependent differentiation and to limit their proliferation. The SWH pathway is also required in the follicle cells to induce axis specification in the oocyte, by inducing the migration of the oocyte nucleus, the reorganization of the cytoskeleton, and the localization of the mRNAs that specify the anterior-posterior and dorsal-ventral axes of the embryo. This work highlights a novel connection between cell proliferation, cell growth, and axis specification in egg chambers.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas de Drosophila/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Polaridade Celular , Drosophila melanogaster , Embrião não Mamífero , Células Epiteliais/citologia , Feminino , Peptídeos e Proteínas de Sinalização Intracelular , Oócitos/citologia , Oogênese , Folículo Ovariano/citologia
10.
Dev Cell ; 13(4): 523-38, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17925228

RESUMO

In Drosophila oocytes, dorso-anterior transport of gurken mRNA requires both the Dynein motor and the heterogeneous nuclear ribonucleoprotein (hnRNP) Squid. We show that gurken transcripts are transported directly on microtubules by Dynein in nonmembranous electron-dense transport particles that also contain Squid and the transport cofactors Egalitarian and Bicaudal-D. At its destination, gurken mRNA is statically anchored by Dynein within large electron-dense cytoplasmic structures known as sponge bodies. Egalitarian and Bicaudal-D contribute only to active transport, whereas Dynein and Squid are also required for gurken mRNA anchoring and the integrity of sponge bodies. Disrupting Dynein function disperses gurken mRNA homogeneously throughout the cytoplasm, whereas the loss of Squid function converts the sponge bodies into active transport particles. We propose that Dynein acts as a static structural component for the assembly of gurken mRNA transport and anchoring complexes, and that Squid is required for the dynamic conversion of transport particles to sponge bodies.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/fisiologia , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Animais , Transporte Biológico Ativo , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Transporte de RNA , Fator de Crescimento Transformador alfa/genética
11.
Dev Dyn ; 236(10): 2818-24, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17849456

RESUMO

Cell migration is a key process in animal development and central to the spread of cancer. Border cell migration in Drosophila egg chambers is an excellent general model for cell migration, but lacks techniques for studying this process in living cells. Here, we describe a simple and effective method of preparing egg chambers in halocarbon oil. The movement and behavior of the migrating border cells can reproducibly be followed in up to 25 egg chambers simultaneously by time-lapse microscopy using a variety of green fluorescent protein markers on a widefield microscope over a period of 4 hr. Our studies reveal a remarkably linear migration route of the border cell cluster and highly dynamic activity within their cluster. Migrating cells rapidly alter their relative positions and generate transient protrusions. These activities are likely to play key roles in the mechanism of migration and cannot readily be analyzed using fixed samples.


Assuntos
Movimento Celular , Drosophila/citologia , Microscopia de Interferência/métodos , Animais , Drosophila/fisiologia , Feminino , Proteínas de Fluorescência Verde , Oogênese , Ovário/citologia
12.
RNA ; 13(11): 1860-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17901156

RESUMO

Motor dependent transport of mRNA is a key mechanism in axis specification during development. Apical transport and anchoring of wingless and pair-rule transcripts in the Drosophila syncytial blastoderm embryo is mediated by cytoplasmic Dynein, the major minus end directed microtubule dependent molecular motor. Here, we show that, despite apical transport of mRNA being highly directional, mRNA particles often pause and move backward toward the plus ends of microtubules. We suggest that this retrograde movement helps overcome cellular obstructions. We show that the plus end movement of apical mRNA is independent of the major plus end microtubule motors Kinesin-1 and Kinesin-2. In contrast, Dynactin, a Dynein processivity factor, is required to suppress retrograde mRNA movements, as well as for efficient minus end motility. We propose that Dynein itself, rather than the activity of a plus end motor, is responsible for the plus end movements of the mRNA and that Dynactin is involved in preventing short reverse movements of the Dynein motor, known to occur in vitro.


Assuntos
Blastoderma/metabolismo , Drosophila/genética , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Mensageiro/metabolismo , Animais , Polaridade Celular , Drosophila/embriologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complexo Dinactina , Dineínas/metabolismo , Fatores de Transcrição Fushi Tarazu/genética , Fatores de Transcrição Fushi Tarazu/metabolismo , Cinesinas/metabolismo , Transporte de RNA , RNA Mensageiro/análise
13.
Development ; 134(10): 1955-65, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17442699

RESUMO

The primary axes of Drosophila are set up by the localization of transcripts within the oocyte. These mRNAs originate in the nurse cells, but how they move into the oocyte remains poorly understood. Here, we study the path and mechanism of movement of gurken RNA within the nurse cells and towards and through ring canals connecting them to the oocyte. gurken transcripts, but not control transcripts, recruit the cytoplasmic Dynein-associated co-factors Bicaudal D (BicD) and Egalitarian in the nurse cells. gurken RNA requires BicD and Dynein for its transport towards the ring canals, where it accumulates before moving into the oocyte. Our results suggest that bicoid and oskar transcripts are also delivered to the oocyte by the same mechanism, which is distinct from cytoplasmic flow. We propose that Dynein-mediated transport of specific RNAs along specialized networks of microtubules increases the efficiency of their delivery, over the flow of general cytoplasmic components, into the oocyte.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Dineínas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Oócitos/metabolismo , Transativadores/fisiologia , Fator de Crescimento Transformador alfa/fisiologia , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Oócitos/citologia , Oogênese , RNA Mensageiro/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fator de Crescimento Transformador alfa/genética
14.
Cell ; 122(1): 97-106, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16009136

RESUMO

Molecular motors actively transport many types of cargo along the cytoskeleton in a wide range of organisms. One class of cargo is localized mRNAs, which are transported by myosin on actin filaments or by kinesin and dynein on microtubules. How the cargo is kept at its final intracellular destination and whether the motors are recycled after completion of transport are poorly understood. Here, we use a new RNA anchoring assay in living Drosophila blastoderm embryos to show that apical anchoring of mRNA after completion of dynein transport does not depend on actin or on continuous active transport by the motor. Instead, apical anchoring of RNA requires microtubules and involves dynein as a static anchor that remains with the cargo at its final destination. We propose a general principle that could also apply to other dynein cargo and to some other molecular motors, whereby cargo transport and anchoring reside in the same molecule.


Assuntos
Transporte Biológico/fisiologia , Blastoderma/fisiologia , Drosophila/embriologia , Drosophila/fisiologia , Dineínas/fisiologia , RNA Mensageiro/metabolismo , Animais , Blastoderma/ultraestrutura , Citoplasma/fisiologia , Citoplasma/ultraestrutura , Drosophila/ultraestrutura , Dineínas/metabolismo , Microtúbulos/fisiologia , Microtúbulos/ultraestrutura
15.
Dev Cell ; 9(1): 51-62, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15992540

RESUMO

Drosophila gurken mRNA is localized by dynein-mediated transport to a crescent near the oocyte nucleus, thus targeting the TGFalpha signal and forming the primary embryonic axes. Here, we show that gurken and the I factor, a non-LTR retrotransposon, share a small consensus RNA stem loop of defined secondary structure, which forms a conserved signal for dynein-mediated RNA transport to the oocyte nucleus. Furthermore, gurken and the I factor compete in vivo for the same localization machinery. I factor transposition leads to its mRNA accumulating near and within the oocyte nucleus, thus causing perturbations in gurken and bicoid mRNA localization and axis specification. These observations further our understanding of the close association of transposable elements with their host and provide an explanation for how I factor transposition causes female sterility. We propose that the transposition of other elements may exploit the host's RNA transport signals and machinery.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , RNA/metabolismo , Retroelementos/fisiologia , Fator de Crescimento Transformador alfa/metabolismo , Animais , Sequência de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Dineínas/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oócitos/fisiologia , Oogênese/genética , Oogênese/fisiologia , RNA/genética , Transporte de RNA , RNA Mensageiro/metabolismo , Retroelementos/genética , Homologia de Sequência do Ácido Nucleico , Transativadores/genética , Transativadores/metabolismo , Fator de Crescimento Transformador alfa/genética
16.
Dev Cell ; 4(3): 307-19, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12636913

RESUMO

In Drosophila oocytes, gurken mRNA localization orientates the TGF-alpha signal to establish the anteroposterior and dorsoventral axes. We have elucidated the path and mechanism of gurken mRNA localization by time-lapse cinematography of injected fluorescent transcripts in living oocytes. gurken RNA assembles into particles that move in two distinct steps, both requiring microtubules and cytoplasmic Dynein. gurken particles first move toward the anterior and then turn and move dorsally toward the oocyte nucleus. We present evidence suggesting that the two steps of gurken RNA transport occur on distinct arrays of microtubules. Such distinct microtubule networks could provide a general mechanism for one motor to transport different cargos to distinct subcellular destinations.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Proteínas de Insetos/genética , Microtúbulos/metabolismo , Proteínas Motores Moleculares/genética , Oócitos/metabolismo , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador alfa , Fatores de Crescimento Transformadores/genética , Animais , Compartimento Celular/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Polaridade Celular/fisiologia , Drosophila melanogaster/citologia , Feminino , Imunofluorescência , Corantes Fluorescentes , Genes Reporter/genética , Oócitos/citologia , RNA Mensageiro/farmacologia
17.
Trends Genet ; 18(12): 636-42, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12446149

RESUMO

Intracellular mRNA localization is a common mechanism of post-transcriptional regulation of gene expression. In a wide range of organisms, mRNA localization coupled with translational regulation target the proteins to their site of function. Here, we describe recent exciting evidence that some mRNAs are transported as particles along the cytoskeleton by the molecular motors dynein, kinesin or myosin. We discuss the key questions of how localized mRNAs might be linked to motors and what determines their cytoplasmic destinations.


Assuntos
Proteínas de Ligação a DNA , Proteínas Motores Moleculares/metabolismo , RNA Mensageiro/metabolismo , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Dineínas/metabolismo , Cinesinas/metabolismo , Miosina Tipo V/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Leveduras/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA