Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946397

RESUMO

Uterine leiomyoma or fibroids are prevalent noncancerous tumors of the uterine muscle layer, yet their origin and development remain poorly understood. We analyzed RNA expression profiles of 15 epigenetic mediators in uterine fibroids compared to myometrium using publicly available RNA sequencing (RNA-seq) data. To validate our findings, we performed RT-qPCR on a separate cohort of uterine fibroids targeting these modifiers confirming our RNA-seq data. We then examined protein profiles of key N6-methyladenosine (m6A) modifiers in fibroids and their matched myometrium, showing no significant differences in concordance with our RNA expression profiles. To determine RNA modification abundance, mRNA and small RNA from fibroids and matched myometrium were analyzed by ultra-high performance liquid chromatography-mass spectrometry identifying prevalent m6A and 11 other known modifiers. However, no aberrant expression in fibroids was detected. We then mined a previously published dataset and identified differential expression of m6A modifiers that were specific to fibroid genetic subtype. Our analysis also identified m6A consensus motifs on genes previously identified to be dysregulated in uterine fibroids. Overall, using state-of-the-art mass spectrometry, RNA expression, and protein profiles, we characterized and identified differentially expressed m6A modifiers in relation to driver mutations. Despite the use of several different approaches, we identified limited differential expression of RNA modifiers and associated modifications in uterine fibroids. However, considering the highly heterogenous genomic and cellular nature of fibroids, and the possible contribution of single molecule m6A modifications to fibroid pathology, there is a need for greater in-depth characterization of m6A marks and modifiers in a larger and diverse patient cohort.


Assuntos
Adenosina , Leiomioma , Neoplasias Uterinas , Leiomioma/genética , Leiomioma/metabolismo , Humanos , Feminino , Adenosina/análogos & derivados , Adenosina/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Miométrio/metabolismo , Miométrio/patologia , Pessoa de Meia-Idade , Adulto , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Epigênese Genética
2.
FASEB J ; 38(11): e23710, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38822676

RESUMO

Steroidogenic tissues contain cytosolic lipid droplets that are important for steroidogenesis. Perilipin 2 (PLIN2), a structural coat protein located on the surface of lipid droplets in mammalian cells, plays a crucial role in regulating lipid droplet formation and contributing to various cellular processes such as lipid storage and energy homeostasis. Herein, we examine the role that PLIN2 plays in regulating progesterone synthesis in the bovine corpus luteum. Utilizing gene array databases and Western blotting, we have delineated the expression pattern of PLIN2 throughout the follicular to luteal transition. Our findings reveal the presence of PLIN2 in both ovarian follicular and steroidogenic luteal cells, demonstrating an increase in its levels as follicular cells transition into the luteal phase. Moreover, the depletion of PLIN2 via siRNA enhanced progesterone production in small luteal cells, whereas adenovirus-mediated overexpression of both PLIN2 and Perilipin 3 (PLIN3) induced an increase in cytosolic lipid droplet accumulation and decreased hormone-induced progesterone synthesis in these cells. Lastly, in vivo administration of the luteolytic hormone prostaglandin F2α resulted in an upregulation of PLIN2 mRNA and protein expression, accompanied by a decline in serum progesterone. Our findings highlight the pivotal role of PLIN2 in regulating progesterone synthesis in the bovine corpus luteum, as supported by its dynamic expression pattern during the follicular to luteal transition and its responsiveness to luteotropic and luteolytic hormones. We suggest PLIN2 as a potential therapeutic target for modulating luteal function.


Assuntos
Células Lúteas , Perilipina-2 , Progesterona , Animais , Feminino , Bovinos , Progesterona/metabolismo , Perilipina-2/metabolismo , Perilipina-2/genética , Células Lúteas/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Perilipina-3/metabolismo , Corpo Lúteo/metabolismo , Células Cultivadas
3.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405789

RESUMO

Progesterone production by the corpus luteum is fundamental for establishing and maintaining pregnancy. The pituitary gonadotropin luteinizing hormone (LH) is recognized as the primary stimulus for luteal formation and progesterone synthesis, regardless of species. Previous studies demonstrated an elevation in abundance of genes related to glucose and lipid metabolism during the follicular to luteal transition. However, the metabolic phenotype of these highly steroidogenic cells has not been studied. Herein, we determined acute metabolic changes induced by LH in primary luteal cells and defined pathways required for progesterone synthesis. Untargeted metabolomics analysis revealed that LH induces rapid changes in vital metabolic pathways, including glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway, de novo lipogenesis, and hydrolysis of phospholipids. LH stimulated glucose uptake, enhanced glycolysis, and flux of [U- 13 C 6 ]-labeled glucose-derived carbons into metabolic branches associated with adenosine 5'-triphosphate (ATP) and NADH/NADPH production, synthesis of nucleotides, proteins, and lipids, glycosylation of proteins or lipids, and redox homeostasis. Selective use of small molecule inhibitors targeting the most significantly changed pathways, such as glycolysis, TCA cycle, and lipogenesis, uncovered cellular metabolic routes required for LH-stimulated steroidogenesis. Furthermore, LH via the protein kinase A (PKA) pathway triggered post- translational modification of acetyl-CoA carboxylase alpha (ACACA) and ATP citrate lyase (ACLY), enzymes involved in de novo synthesis of fatty acids. Inhibition of ACLY and fatty acid transport into mitochondria reduced LH-stimulated ATP, cAMP production, PKA activation, and progesterone synthesis. Taken together, these findings reveal novel hormone-sensitive metabolic pathways essential for maintaining LHCGR/PKA signaling and steroidogenesis in ovarian luteal cells. Significance: The establishment and maintenance of pregnancy require a well-developed corpus luteum, an endocrine gland within the ovary that produces progesterone. Although there is increased awareness of intracellular signaling events initiating the massive production of progesterone during the reproductive cycle and pregnancy, there are critical gaps in our knowledge of the metabolic and lipidomic pathways required for initiating and maintaining luteal progesterone synthesis. Here, we describe rapid, hormonally triggered metabolic pathways, and define metabolic targets crucial for progesterone synthesis by ovarian steroidogenic cells. Understanding hormonal control of metabolic pathways may help elucidate approaches for improving ovarian function and successful reproduction or identifying metabolic targets for developing nonhormonal contraceptives.

4.
Front Physiol ; 14: 1254943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841308

RESUMO

The corpus luteum is a transient ovarian endocrine gland that produces the progesterone necessary for the establishment and maintenance of pregnancy. The formation and function of this gland involves angiogenesis, establishing the tissue with a robust blood flow and vast microvasculature required to support production of progesterone. Every steroidogenic cell within the corpus luteum is in direct contact with a capillary, and disruption of angiogenesis impairs luteal development and function. At the end of a reproductive cycle, the corpus luteum ceases progesterone production and undergoes rapid structural regression into a nonfunctional corpus albicans in a process initiated and exacerbated by the luteolysin prostaglandin F2α (PGF2α). Structural regression is accompanied by complete regression of the luteal microvasculature in which endothelial cells die and are sloughed off into capillaries and lymphatic vessels. During luteal regression, changes in nitric oxide transiently increase blood flow, followed by a reduction in blood flow and progesterone secretion. Early luteal regression is marked by an increased production of cytokines and chemokines and influx of immune cells. Microvascular endothelial cells are sensitive to released factors during luteolysis, including thrombospondin, endothelin, and cytokines like tumor necrosis factor alpha (TNF) and transforming growth factor ß 1 (TGFB1). Although PGF2α is known to be a vasoconstrictor, endothelial cells do not express receptors for PGF2α, therefore it is believed that the angioregression occurring during luteolysis is mediated by factors downstream of PGF2α signaling. Yet, the exact mechanisms responsible for angioregression in the corpus luteum remain unknown. This review describes the current knowledge on angioregression of the corpus luteum and the roles of vasoactive factors released during luteolysis on luteal vasculature and endothelial cells of the microvasculature.

5.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609293

RESUMO

Uterine leiomyoma or fibroids are the most common prevalent noncancerous tumors of the uterine muscle layer. Common symptoms associated with fibroids include pelvic pain, heavy menstrual bleeding, anemia, and pelvic pressure. These tumors are a leading cause of gynecological care but lack long-term therapy as the origin and development of fibroids are not well understood. Several next-generation sequencing technologies have been performed to identify the underlying genetic and epigenetic basis of fibroids. However, there remains a systemic gap in our understanding of molecular and biological process that define uterine fibroids. Recent epitranscriptomics studies have unraveled RNA modifications that are associated with all forms of RNA and are thought to influence both normal physiological functions and the progression of diseases. We quantified RNA expression profiles by analyzing publicly available RNA-seq data for 15 known epigenetic mediators to identify their expression profile in uterine fibroids compared to myometrium. To validate our findings, we performed RT-qPCR on a separate cohort of uterine fibroids targeting these modifiers confirming our RNA-seq data. We then examined protein profiles of key m6A modifiers in fibroids and their matched myometrium. In concordance with our RNA expression profiles, no significant differences were observed in these proteins in uterine fibroids compared to myometrium. To determine abundance of RNA modifications, mRNA and small RNA from fibroids and matched myometrium were analyzed by UHPLC MS/MS. In addition to the prevalent N6-methyladenosine (m6A), we identified 11 other known modifiers but did not identify any aberrant expression in fibroids. We then mined a previously published dataset and identified differential expression of m6A modifiers that were specific to fibroid genetic sub-type. Our analysis also identified m6A consensus motifs on genes previously identified to be dysregulated in uterine fibroids. Overall, using state-of-the-art mass spectrometry, RNA expression and protein profiles, we characterized and identified differentially expressed m6A modifiers in relation to driver mutations. Despite the use of several different approaches, we identified limited differential expression of RNA modifiers and associated modifications in uterine fibroids. However, considering the highly heterogenous genomic and cellular nature of fibroids, and the possible contribution of single molecule m6A modifications to fibroid pathology, there is a need for greater in-depth characterization of m6A marks and modifiers in a larger and varied patient cohort.

6.
Endocrinology ; 164(9)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586092

RESUMO

Progesterone is an essential steroid hormone that is required to initiate and maintain pregnancy in mammals and serves as a metabolic intermediate in the synthesis of endogenously produced steroids, including sex hormones and corticosteroids. Steroidogenic luteal cells of the corpus luteum have the tremendous capacity to synthesize progesterone. These specialized cells are highly enriched with lipid droplets that store lipid substrate, which can be used for the synthesis of steroids. We recently reported that hormone-stimulated progesterone synthesis by luteal cells requires protein kinase A-dependent mobilization of cholesterol substrate from lipid droplets to mitochondria. We hypothesize that luteal lipid droplets are enriched with steroidogenic enzymes and facilitate the synthesis of steroids in the corpus luteum. In the present study, we analyzed the lipid droplet proteome, conducted the first proteomic analysis of lipid droplets under acute cyclic adenosine monophosphate (cAMP)-stimulated conditions, and determined how specific lipid droplet proteins affect steroidogenesis. Steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 and 3 beta-hydroxysteroid dehydrogenase (HSD3B), were highly abundant on lipid droplets of the bovine corpus luteum. High-resolution confocal microscopy confirmed the presence of active HSD3B on the surface of luteal lipid droplets. We report that luteal lipid droplets have the capacity to synthesize progesterone from pregnenolone. Lastly, we analyzed the lipid droplet proteome following acute stimulation with cAMP analog, 8-Br-cAMP, and report increased association of HSD3B with luteal lipid droplets following stimulation. These findings provide novel insights into the role of luteal lipid droplets in steroid synthesis.


Assuntos
Gotículas Lipídicas , Progesterona , Gravidez , Feminino , Bovinos , Animais , Progesterona/metabolismo , Gotículas Lipídicas/metabolismo , Proteoma/metabolismo , Proteômica , Corpo Lúteo/metabolismo , Esteroides , Hormônios/metabolismo , Mamíferos/metabolismo
7.
Biol Reprod ; 109(3): 367-380, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37283496

RESUMO

Cyclic regression of the ovarian corpus luteum, the endocrine gland responsible for progesterone production, involves rapid matrix remodeling. Despite fibroblasts in other systems being known for producing and maintaining extracellular matrix, little is known about fibroblasts in the functional or regressing corpus luteum. Vast transcriptomic changes occur in the regressing corpus luteum, among which are reduced levels of vascular endothelial growth factor A (VEGFA) and increased expression of fibroblast growth factor 2 (FGF2) after 4 and 12 h of induced regression, when progesterone is declining and the microvasculature is destabilizing. We hypothesized that FGF2 activates luteal fibroblasts. Analysis of transcriptomic changes during induced luteal regression revealed elevations in markers of fibroblast activation and fibrosis, including fibroblast activation protein (FAP), serpin family E member 1 (SERPINE1), and secreted phosphoprotein 1 (SPP1). To test our hypothesis, we treated bovine luteal fibroblasts with FGF2 to measure downstream signaling, type 1 collagen production, and proliferation. We observed rapid and robust phosphorylation of various signaling pathways involved in proliferation, such as ERK, AKT, and STAT1. From our longer-term treatments, we determined that FGF2 has a concentration-dependent collagen-inducing effect, and that FGF2 acts as a mitogen for luteal fibroblasts. FGF2-induced proliferation was greatly blunted by inhibition of AKT or STAT1 signaling. Our results suggest that luteal fibroblasts are responsive to factors that are released by the regressing bovine corpus luteum, an insight into the contribution of fibroblasts to the microenvironment in the regressing corpus luteum.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Progesterona , Animais , Bovinos , Feminino , Proliferação de Células , Colágeno/metabolismo , Corpo Lúteo/metabolismo , Dinoprosta/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Luteólise , Progesterona/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Cell Death Dis ; 14(4): 239, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015904

RESUMO

Female subfertility is an increasing reproductive issue worldwide, which is partially related to abnormal ovarian follicular development. Granulosa cells (GCs), by providing the necessary physical support and microenvironment for follicular development, play critical roles in maintaining female fertility. We previously showed that ectopic expression of four and a half LIM domains 2 (FHL2) promoted ovarian granulosa cell tumor progression. However, its function in follicular development and fertility remains unknown. Here, we confirmed that FHL2 is highly expressed in human and mouse ovaries. FHL2 immunosignals were predominantly expressed in ovarian GCs. A Fhl2 knockout (KO) mouse model was generated to examine its roles in follicular development and fertility. Compared with wildtype, knockout of Fhl2 significantly decreased female litter size and offspring number. Furthermore, Fhl2 deficiency reduced ovarian size and impaired follicular development. RNA-sequencing analysis of GCs isolated from either KO or WT mice revealed that, Fhl2 deletion impaired multiple biological functions and signaling pathways, such as Ovarian Putative Early Atresia Granulosa Cell, ErbB, Hippo/YAP, etc. In vitro studies confirmed that FHL2 silencing suppressed GCs growth and EGF-induced GCs proliferation, while its overexpression promoted GC proliferation and decreased apoptosis. Mechanistic studies indicated that FHL2, via forming complexes with transcriptional factors AP-1 or NF-κB, regulated Egf and Egfr expression, respectively. Besides, FHL2 depletion decreased YAP1 expression, especially the active form of YAP1 (nuclear YAP1) in GCs of growing follicles. EGF, serving as an autocrine/paracrine factor, not only induced FHL2 expression and nuclear accumulation, but also stimulated YAP1 expression and activation. Collectively, our study suggests that FHL2 interacts with EGFR and Hippo/YAP signaling to regulate follicular development and maintain fertility. This study illuminates a novel mechanism for follicular development and a potential therapeutic target to address subfertility.


Assuntos
Fator de Crescimento Epidérmico , Células da Granulosa , Feminino , Humanos , Camundongos , Animais , Fator de Crescimento Epidérmico/metabolismo , Células da Granulosa/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fator de Transcrição AP-1/metabolismo , Fertilidade , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo
9.
Oncogene ; 41(30): 3761-3777, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761037

RESUMO

Human papillomavirus (HPV) infection is very common in sexually active women, but cervical cancer only develops in a small fraction of HPV-infected women, suggesting that unknown intrinsic factors associated with the unique genetic/genomic background of the high-risk population play a critical role in cervical carcinogenesis. Although our previous studies have identified the hyperactivated YAP1 oncogene as a critical contributor to cervical cancer, the molecular mechanism by which YAP1 drives cervical cancer is unknown. In the present study, we found that although the hyperactivated YAP1 caused a malignant transformation of immortalized cervical epithelial cells, it induced cellular senescence in cultures of primary human cervical epithelial cells (HCvECs). However, the hyperactivated YAP1 induced malignant transformation of HCvECs in the presence of high-risk HPV E6/E7 proteins, suggesting that the hyperactivated YAP1 synergizes with HPV to initiate cervical cancer development. Our mechanistic studies demonstrate that YAP1, via up-regulating LATS2, formed a YAP1-LATS2 negative feedback loop in cervical epithelial cells to maintain homeostasis of cervical tissue. Intriguingly, we found that high-risk HPV targets LATS2 to disrupt the feedback loop leading to the malignant transformation of cervical epithelial cells. Finally, we report that mitomycin C, an FDA-approved drug that could upregulate LATS2 and drive cellular senescence in vitro and in vivo, induced a regression of cervical cancer in a pre-clinial animal model. Thus, high-risk HPV targeting the YAP1-LATS2 feedback loop represents a new mechanism of cervical cancer development.


Assuntos
Alphapapillomavirus , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Retroalimentação , Feminino , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/complicações , Proteínas Serina-Treonina Quinases , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor , Neoplasias do Colo do Útero/patologia , Proteínas de Sinalização YAP
10.
Animals (Basel) ; 12(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35565634

RESUMO

Anti-Müllerian hormone (AMH) is secreted by the ovaries of female animals and exerts its biological effects through the type II receptor (AMHR2). AMH regulates follicular growth by inhibiting the recruitment of primordial follicles and reducing the sensitivity of antral follicles to FSH. Despite the considerable research on the actions of AMH in granulosa cells, the effect of AMH on the in vitro maturation of oocytes remains largely unknown. In the current study, we showed that AMH is only expressed in cumulus cells, while AMHR2 is produced in both cumulus cells and oocytes. AMH had no significant effect on COCs nuclear maturation, whereas it inhibited the stimulatory effects of FSH on COCs maturation and cumulus expansion. Moreover, AMH treatment effectively inhibited the positive effect of FSH on the mRNA expressions of Hyaluronan synthase 2 (Has2), Pentraxin 3 (Ptx3), and TNF-alpha-induced protein 6 (Tnfaip 6) genes in COCs. In addition, AMH significantly decreased the FSH-stimulated progesterone production, but did not change estradiol levels. Taken together, our results suggest that AMH may inhibit the effects of FSH-induced COCs in vitro maturation and cumulus expansion. These findings increase our knowledge of the functional role of AMH in regulating folliculogenesis.

11.
Endocr Rev ; 43(6): 1074-1096, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-35596657

RESUMO

Emerging studies indicate that the Hippo pathway, a highly conserved pathway that regulates organ size control, plays an important role in governing ovarian physiology, fertility, and pathology. Specific to the ovary, the spatiotemporal expression of the major components of the Hippo signaling cascade are observed throughout the reproductive lifespan. Observations from multiple species begin to elucidate the functional diversity and molecular mechanisms of Hippo signaling in the ovary in addition to the identification of interactions with other signaling pathways and responses to various external stimuli. Hippo pathway components play important roles in follicle growth and activation, as well as steroidogenesis, by regulating several key biological processes through mechanisms of cell proliferation, migration, differentiation, and cell fate determination. Given the importance of these processes, dysregulation of the Hippo pathway contributes to loss of follicular homeostasis and reproductive disorders such as polycystic ovary syndrome (PCOS), premature ovarian insufficiency, and ovarian cancers. This review highlights what is currently known about the Hippo pathway core components in ovarian physiology, including ovarian development, follicle development, and oocyte maturation, while identifying areas for future research to better understand Hippo signaling as a multifunctional pathway in reproductive health and biology.


Assuntos
Via de Sinalização Hippo , Insuficiência Ovariana Primária , Feminino , Humanos , Folículo Ovariano/fisiologia , Fertilidade
12.
Biol Reprod ; 106(1): 118-131, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34726240

RESUMO

A population of cows with excess androstenedione (A4; High A4) in follicular fluid, with follicular arrest, granulosa cell dysfunction, and a 17% reduction in calving rate was previously identified. We hypothesized that excess A4 in the ovarian microenvironment caused the follicular arrest in High A4 cows and that vascular endothelial growth factor A would rescue the High A4 phenotype. In trial 1, prior to culture, High A4 ovarian cortex (n = 9) had greater numbers of early stage follicles (primordial) and fewer later-stage follicles compared to controls (n = 11). Culture for 7 days did not relieve this follicular arrest; instead, High A4 ovarian cortex had increased indicators of inflammation, anti-Mullerian hormone, and A4 secretion compared to controls. In trial 2, we tested if vascular endothelial growth factor A isoforms could rescue the High A4 phenotype. High A4 (n = 5) and control (n = 5) ovarian cortex was cultured with (1) PBS, (2) VEGFA165 (50 ng/mL), (3) VEGFA165B (50 ng/mL), or (4) VEGFA165 + VEGFA165B (50 ng/mL each) for 7 days. Follicular progression increased with VEGFA165 in High A4 cows with greater early primary, primary, and secondary follicles than controls. Similar to trial 1, High A4 ovarian cortex secreted greater concentrations of A4 and other steroids and had greater indicators of inflammation compared to controls. However, VEGFA165 rescued steroidogenesis, oxidative stress, and fibrosis. The VEGFA165 and VEGFA165b both reduced IL-13, INFα, and INFß secretion in High A4 cows to control levels. Thus, VEGFA165 may be a potential therapeutic to restore the ovarian steroidogenic microenvironment and may promote folliculogenesis.


Assuntos
Androstenodiona/análise , Anovulação/veterinária , Doenças dos Bovinos/tratamento farmacológico , Inflamação/tratamento farmacológico , Folículo Ovariano/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Androstenodiona/metabolismo , Animais , Anovulação/tratamento farmacológico , Anovulação/fisiopatologia , Hormônio Antimülleriano/metabolismo , Bovinos , Citocinas/metabolismo , Feminino , Fibrose , Líquido Folicular/química , Folículo Ovariano/fisiopatologia , Ovário/metabolismo , Ovário/patologia , Estresse Oxidativo/efeitos dos fármacos , Isoformas de Proteínas/administração & dosagem , Técnicas de Cultura de Tecidos/veterinária
13.
Hum Reprod ; 36(7): 1891-1906, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34059912

RESUMO

STUDY QUESTION: Does hypo-glycosylated human recombinant FSH (hFSH18/21) have greater in vivo bioactivity that drives follicle development in vivo compared to fully-glycosylated human recombinant FSH (hFSH24)? SUMMARY ANSWER: Compared with fully-glycosylated hFSH, hypo-glycosylated hFSH has greater bioactivity, enabling greater follicular health and growth in vivo, with enhanced transcriptional activity, greater activation of receptor tyrosine kinases (RTKs) and elevated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling. WHAT IS KNOWN ALREADY: Glycosylation of FSH is necessary for FSH to effectively activate the FSH receptor (FSHR) and promote preantral follicular growth and formation of antral follicles. In vitro studies demonstrate that compared to fully-glycosylated recombinant human FSH, hypo-glycosylated FSH has greater activity in receptor binding studies, and more effectively stimulates the PKA pathway and steroidogenesis in human granulosa cells. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional study evaluating the actions of purified recombinant human FSH glycoforms on parameters of follicular development, gene expression and cell signaling in immature postnatal day (PND) 17 female CD-1 mice. To stimulate follicle development in vivo, PND 17 female CD-1 mice (n = 8-10/group) were treated with PBS (150 µl), hFSH18/21 (1 µg/150 µl PBS) or hFSH24 (1 µg/150 µl PBS) by intraperitoneal injection (i.p.) twice daily (8:00 a.m. and 6:00 p.m.) for 2 days. Follicle numbers, serum anti-Müllerian hormone (AMH) and estradiol levels, and follicle health were quantified. PND 17 female CD-1 mice were also treated acutely (2 h) in vivo with PBS, hFSH18/21 (1 µg) or hFSH24 (1 µg) (n = 3-4/group). One ovary from each mouse was processed for RNA sequencing analysis and the other ovary processed for signal transduction analysis. An in vitro ovary culture system was used to confirm the relative signaling pathways. PARTICIPANTS/MATERIALS, SETTING, METHODS: The purity of different recombinant hFSH glycoforms was analyzed using an automated western blot system. Follicle numbers were determined by counting serial sections of the mouse ovary. Real-time quantitative RT-PCR, western blot and immunofluorescence staining were used to determine growth and apoptosis markers related with follicle health. RNA sequencing and bioinformatics were used to identify pathways and processes associated with gene expression profiles induced by acute FSH glycoform treatment. Analysis of RTKs was used to determine potential FSH downstream signaling pathways in vivo. Western blot and in vitro ovarian culture system were used to validate the relative signaling pathways. MAIN RESULTS AND THE ROLE OF CHANCE: Our present study shows that both hypo- and fully-glycosylated recombinant human FSH can drive follicular growth in vivo. However, hFSH18/21 promoted development of significantly more large antral follicles compared to hFSH24 (P < 0.01). In addition, compared with hFSH24, hFSH18/21 also promoted greater indices of follicular health, as defined by lower BAX/BCL2 ratios and reduced cleaved Caspase 3. Following acute in vivo treatment with FSH glycoforms RNA-sequencing data revealed that both FSH glycoforms rapidly induced ovarian transcription in vivo, but hypo-glycosylated FSH more robustly stimulated Gαs and cAMP-mediated signaling and members of the AP-1 transcription factor complex. Moreover, hFSH18/21 treatment induced significantly greater activation of RTKs, PI3K/AKT and MAPK/ERK signaling compared to hFSH24. FSH-induced indices of follicle growth in vitro were blocked by inhibition of PI3K and MAPK. LARGE SCALE DATA: RNA sequencing of mouse ovaries. Data will be shared upon reasonable request to the corresponding author. LIMITATIONS, REASONS FOR CAUTION: The observations that hFSH glycoforms have different bioactivities in the present study employing a mouse model of follicle development should be verified in nonhuman primates. The gene expression studies reflect transcriptomes of whole ovaries. WIDER IMPLICATIONS OF THE FINDINGS: Commercially prepared recombinant human FSH used for ovarian stimulation in human ART is fully-glycosylated FSH. Our findings that hypo-glycosylated hFSH has greater bioactivity enabling greater follicular health and growth without exaggerated estradiol production in vivo, demonstrate the potential for its development for application in human ART. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by NIH 1P01 AG029531, NIH 1R01 HD 092263, VA I01 BX004272, and the Olson Center for Women's Health. JSD is the recipient of a VA Senior Research Career Scientist Award (1IK6 BX005797). This work was also partially supported by National Natural Science Foundation of China (No. 31872352). The authors declared there are no conflicts of interest.


Assuntos
Hormônio Foliculoestimulante Humano , Proteínas Quinases Ativadas por Mitógeno , Folículo Ovariano/crescimento & desenvolvimento , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Animais , China , Estudos Transversais , Feminino , Glicosilação , Camundongos , Proteínas Recombinantes
14.
Endocrinology ; 162(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33502468

RESUMO

Luteinizing hormone (LH) via protein kinase A (PKA) triggers ovulation and formation of the corpus luteum, which arises from the differentiation of follicular granulosa and theca cells into large and small luteal cells, respectively. The small and large luteal cells produce progesterone, a steroid hormone required for establishment and maintenance of pregnancy. We recently reported on the importance of hormone-sensitive lipase (HSL, also known as LIPE) and lipid droplets for appropriate secretory function of the corpus luteum. These lipid-rich intracellular organelles store cholesteryl esters, which can be hydrolyzed by HSL to provide cholesterol, the main substrate necessary for progesterone synthesis. In the present study, we analyzed dynamic posttranslational modifications of HSL mediated by PKA and AMP-activated protein kinase (AMPK) as well as their effects on steroidogenesis in luteal cells. Our results revealed that AMPK acutely inhibits the stimulatory effects of LH/PKA on progesterone production without reducing levels of STAR, CYP11A1, and HSD3B proteins. Exogenous cholesterol reversed the negative effects of AMPK on LH-stimulated steroidogenesis, suggesting that AMPK regulates cholesterol availability in luteal cells. AMPK evoked inhibitory phosphorylation of HSL (Ser565). In contrast, LH/PKA decreased phosphorylation of AMPK at Thr172, a residue required for its activation. Additionally, LH/PKA increased phosphorylation of HSL at Ser563, which is crucial for enzyme activation, and decreased inhibitory phosphorylation of HSL at Ser565. The findings indicate that LH and AMPK exert opposite posttranslational modifications of HSL, presumptively regulating cholesterol availability for steroidogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Lúteas/citologia , Células Lúteas/enzimologia , Progesterona/metabolismo , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Motivos de Aminoácidos , Animais , Bovinos , Colesterol/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ativação Enzimática , Feminino , Células Lúteas/metabolismo , Hormônio Luteinizante/metabolismo , Fosforilação , Transdução de Sinais
15.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092075

RESUMO

Epithelial ovarian cancer (EOC) is one of the most lethal gynecologic malignancies. To date, the etiology of this deadly disease remains elusive. FHL2, a member of the four and a half LIM domain family, has been shown to serve either as an oncoprotein or as a tumor suppressor in various cancers. Our previous study showed that FHL2 plays a critical role in the initiation and progression of ovarian granulosa cell tumor via regulating AKT1 transcription. However, direct and systematic evidence of FHL2 in the initiation and progression of EOC remains unclear. In the present study, immunohistochemical analysis from EOC patient tissues showed that positivity and intensity of FHL2 immunosignal were up-regulated in the EOC tissues compared with normal ovary tissues. Knockdown of FHL2 in SKOV-3 cell line reduced cell growth and cell viability, blocked cell cycle progression, and inhibited cell migration. Ectopic expression of FHL2 in IGROV-1 cells which have low endogenous FHL2, promoted cell growth, improved cell viability and enhanced cell migration. Additionally, knock down of FHL2 in the SKOV-3 cell line significantly inhibited anchorage-independent growth indicated by the soft agar assay. In comparison, overexpression of FHL2 in IGROV-1 cell improved the colonies growth in soft agar. Western blot data showed that knockdown of FHL2 downregulated AKT expression level, and upregulated apoptosis related proteins such as cleaved PARP, and cleaved-lamin A. Finally, by employing stable SKOV-3/FHL2 stable knock down cell line, our data clearly showed that knockdown of FHL2 inhibited EOC xenograft initiation in vivo. Taken together, our results showed that FHL2, via regulating cell proliferation, cell cycle, and adhesion, has a critical role in regulating EOC initiation and progression. These results indicate that FHL2 could be a potential target for the therapeutic drugs against EOC.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Musculares/metabolismo , Neoplasias Ovarianas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Carcinogênese/genética , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Proteínas com Homeodomínio LIM/genética , Camundongos Nus , Proteínas Musculares/genética , Neoplasias Ovarianas/genética , Interferência de RNA , Terapêutica com RNAi/métodos , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
Sci Rep ; 10(1): 11287, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647143

RESUMO

Establishment and maintenance of pregnancy depends on progesterone synthesized by luteal tissue in the ovary. Our objective was to identify the characteristics of lipid droplets (LDs) in ovarian steroidogenic cells. We hypothesized that LDs are a major feature of steroidogenic luteal cells and store cholesteryl esters. Whole bovine tissues, isolated ovarian steroidogenic cells (granulosa, theca, small luteal, and large luteal), and isolated luteal LDs were assessed for LD content, LD-associated proteins and lipid analyses. Bovine luteal tissue contained abundant lipid droplets, LD-associated perilipins 2/3/5, hormone-sensitive lipase, and 1-acylglycerol-3-phosphate O-acyltransferase ABHD5. Luteal tissue was enriched in triglycerides (TGs) compared to other tissues, except for adipose tissue. Luteal cells were distinguishable from follicular cells by the presence of LDs, LD-associated proteins, and increased TGs. Furthermore, LDs from large luteal cells were numerous and small; whereas, LDs from small luteal cells were large and less numerous. Isolated LDs contained nearly all of the TGs and cholesteryl esters present in luteal tissue. Isolated luteal LDs were composed primarily of TG, with lesser amounts of cholesteryl esters, diglyceride and other phospholipids. Bovine luteal LDs are distinct from LDs in other bovine tissues, including follicular steroidogenic cells.


Assuntos
Corpo Lúteo/metabolismo , Gotículas Lipídicas/química , Lipídeos/química , Ovário/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , Animais , Bovinos , Ésteres do Colesterol/metabolismo , Feminino , Células da Granulosa/metabolismo , Lipidômica , Células Lúteas/metabolismo , Microscopia Confocal , Ovulação , Perilipina-1/química , Progesterona/metabolismo , Espectrometria de Massas em Tandem , Células Tecais/metabolismo
17.
FASEB J ; 34(8): 10731-10750, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32614098

RESUMO

The corpus luteum is a transient endocrine gland that synthesizes and secretes the steroid hormone, progesterone, which is vital for establishment and maintenance of pregnancy. Luteinizing hormone (LH) via activation of protein kinase A (PKA) acutely stimulates luteal progesterone synthesis via a complex process, converting cholesterol via a series of enzymatic reactions, into progesterone. Lipid droplets in steroidogenic luteal cells store cholesterol in the form of cholesterol esters, which are postulated to provide substrate for steroidogenesis. Early enzymatic studies showed that hormone sensitive lipase (HSL) hydrolyzes luteal cholesterol esters. In this study, we tested whether HSL is a critical mediator of the acute actions of LH on luteal progesterone production. Using LH-responsive bovine small luteal cells our results reveal that LH, forskolin, and 8-Br cAMP-induced PKA-dependent phosphorylation of HSL at Ser563 and Ser660, events known to promote HSL activity. Small molecule inhibition of HSL activity and siRNA-mediated knock down of HSL abrogated LH-induced progesterone production. Moreover, western blotting and confocal microscopy revealed that LH stimulates phosphorylation and translocation of HSL to lipid droplets. Furthermore, LH increased trafficking of cholesterol from the lipid droplets to the mitochondria, which was dependent on both PKA and HSL activation. Taken together, these findings identify a PKA/HSL signaling pathway in luteal cells in response to LH and demonstrate the dynamic relationship between PKA, HSL, and lipid droplets in luteal progesterone synthesis.


Assuntos
Transporte Biológico/fisiologia , Colesterol/metabolismo , Gotículas Lipídicas/metabolismo , Células Lúteas/metabolismo , Mitocôndrias/metabolismo , Animais , Bovinos , Colforsina/metabolismo , Corpo Lúteo/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Hormônio Luteinizante/metabolismo , Fosforilação/fisiologia , Gravidez , Progesterona/metabolismo , Transdução de Sinais/fisiologia
18.
Cancers (Basel) ; 12(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575572

RESUMO

Heterotrimeric G-proteins are ubiquitously expressed in several cancers, and they transduce signals from activated G-protein coupled receptors. These proteins have numerous biological functions, and they are becoming interesting target molecules in cancer therapy. Previously, we have shown that heterotrimeric G-protein subunit alphai2 (Gαi2) has an essential role in the migration and invasion of prostate cancer cells. Using a structure-based approach, we have synthesized optimized small molecule inhibitors that are able to prevent specifically the activation of the Gαi2 subunit, keeping the protein in its inactive GDP-bound state. We observed that two of the compounds (13 and 14) at 10 µΜ significantly inhibited the migratory behavior of the PC3 and DU145 prostate cancer cell lines. Additionally, compound 14 at 10 µΜ blocked the activation of Gαi2 in oxytocin-stimulated prostate cancer PC3 cells, and inhibited the migratory capability of DU145 cells overexpressing the constitutively active form of Gαi2, under basal and EGF-stimulated conditions. We also observed that the knockdown or inhibition of Gαi2 negatively regulated migration of renal and ovarian cancer cell lines. Our results suggest that small molecule inhibitors of Gαi2 have potential as leads for discovering novel anti-metastatic agents for attenuating the capability of cancer cells to spread and invade to distant sites.

19.
Mol Cell Endocrinol ; 514: 110911, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32553947

RESUMO

Previous studies have reported hypo-glycosylated FSH and fully-glycosylated FSH to be naturally occurring in humans, and these glycoforms exist in changing ratios over a woman's lifespan. The precise cellular and molecular effects of recombinant human FSH (hFSH) glycoforms, FSH21 and FSH24, have not been documented in primary granulosa cells. Herein, biological responses to FSH21 and FSH24 were compared in primary porcine granulosa cells. Hypo-glycosylated hFSH21 was significantly more effective than fully-glycosylated hFSH24 at stimulating cAMP accumulation and protein kinase A (PKA) activity, leading to the higher phosphorylation of CREB and ß-Catenin. Compared to fully-glycosylated hFSH24, hypo-glycosylated hFSH21 also induced greater levels of transcripts for HSD3B, STAR and INHA, and higher progesterone production. Our results demonstrate that hypo-glycosylated hFSH21 exerts more robust activation of intracellular signals associated with steroidogenesis than fully-glycosylated hFSH24 in primary porcine granulosa cells, and furthers our understanding of the differing bioactivities of FSH glycoforms in the ovary.


Assuntos
Hormônio Foliculoestimulante Humano/farmacologia , Células da Granulosa/efeitos dos fármacos , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Hormônio Foliculoestimulante Humano/química , Hormônio Foliculoestimulante Humano/metabolismo , Glicosilação , Células da Granulosa/citologia , Células da Granulosa/fisiologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Cultura Primária de Células/veterinária , Progesterona/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Suínos , beta Catenina/metabolismo
20.
FASEB J ; 34(4): 5299-5316, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32077149

RESUMO

The corpus luteum is an endocrine gland that synthesizes and secretes progesterone. Luteinizing hormone (LH) activates protein kinase A (PKA) signaling in luteal cells, increasing delivery of substrate to mitochondria for progesterone production. Mitochondria maintain a highly regulated equilibrium between fusion and fission in order to sustain biological function. Dynamin-related protein 1 (DRP1), is a key mediator of mitochondrial fission. The mechanism by which DRP1 is regulated in the ovary is largely unknown. We hypothesize that LH via PKA differentially regulates the phosphorylation of DRP1 on Ser616 and Ser637 in bovine luteal cells. In primary cultures of steroidogenic small luteal cells (SLCs), LH, and forskolin stimulated phosphorylation of DRP1 (Ser 637), and inhibited phosphorylation of DRP1 (Ser 616). Overexpression of a PKA inhibitor blocked the effects of LH and forskolin on DRP1 phosphorylation. In addition, LH decreased the association of DRP1 with the mitochondria. Genetic knockdown of the DRP1 mitochondria receptor, and a small molecule inhibitor of DRP1 increased basal and LH-induced progesterone production. Studies with a general Dynamin inhibitor and siRNA knockdown of DRP1 showed that DRP1 is required for optimal LH-induced progesterone biosynthesis. Taken together, the findings place DRP1 as an important target downstream of PKA in steroidogenic luteal cells.


Assuntos
Corpo Lúteo/metabolismo , Dinaminas/metabolismo , Hormônio Luteinizante/farmacologia , Dinâmica Mitocondrial , Progesterona/biossíntese , Animais , Bovinos , Corpo Lúteo/efeitos dos fármacos , AMP Cíclico/metabolismo , Dinaminas/genética , Feminino , Fosforilação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA