Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Am J Physiol Renal Physiol ; 318(6): F1478-F1488, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32390515

RESUMO

Activation of immunological pathways and disturbances of extracellular matrix (ECM) dynamics are important contributors to the pathogenesis of chronic kidney diseases. Glomerular mesangial cells (MCs) are critical for homeostasis of glomerular ECM dynamics. Interleukin-6 (IL-6) can act as a pro/anti-inflammatory agent relative to cell types and conditions. This study investigated whether IL-6 influences ECM protein production by MCs and the regulatory pathways involved. Experiments were carried out in cultured human MCs (HMCs) and in mice. We found that overexpression of IL-6 and its receptor decreased the abundance of fibronectin and collagen type IV in MCs. ELISA and immunoblot analysis demonstrated that thapsigargin [an activator of store-operated Ca2+ entry (SOCE)], but not the endoplasmic reticulum stress inducer tunicamycin, significantly increased IL-6 content. This thapsigargin effect was abolished by GSK-7975A, a selective inhibitor of SOCE, and by silencing Orai1 (the channel protein mediating SOCE). Furthermore, inhibition of NF-κB pharmacologically and genetically significantly reduced SOCE-induced IL-6 production. Thapsigargin also stimulated nuclear translocation of the p65 subunit of NF-κB. Moreover, MCs overexpressing IL-6 and its receptor in HMCs increased the content of the glucagon-like peptide-1 receptor (GLP-1R), and IL-6 inhibition of fibronectin was attenuated by the GLP-1R antagonist exendin 9-39. In agreement with the HMC data, specific knockdown of Orai1 in MCs using the targeted nanoparticle delivery system in mice significantly reduced glomerular GLP-1R levels. Taken together, our results suggest a novel SOCE/NF-κB/IL-6/GLP-1R signaling pathway that inhibits ECM protein production by MCs.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Interleucina-6/metabolismo , Células Mesangiais/metabolismo , Receptores de Interleucina-6/metabolismo , Animais , Células Cultivadas , Regulação para Baixo , Proteínas da Matriz Extracelular/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Interleucina-6/genética , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Receptores de Interleucina-6/genética , Transdução de Sinais
2.
Mol Pharm ; 17(2): 717-721, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31916770

RESUMO

In women with human epidermal growth factor 2 (HER2)-positive breast cancer, the improved control of systemic disease with new therapies has unmasked brain metastases that historically would have remained clinically silent. The efficacy of therapeutic agents against brain metastases is limited by their inability to permeate the blood-brain and blood-tumor barriers (BBB and BTB) in therapeutic amounts. Here, we investigate the potential of mucic acid-based, targeted nanoparticles designed to transcytose the BBB/BTB to deliver a small molecule drug, camptothecin (CPT), and therapeutic antibody, Herceptin, to brain metastases in mice. Treatment with BBB-targeted combination CPT/Herceptin nanoparticles significantly inhibits tumor growth compared to free CPT/Herceptin and BBB-targeted nanoparticles carrying CPT alone. Though not as efficacious, BBB-targeted nanoparticles carrying only Herceptin also elicit considerable antitumor activity. These results demonstrate the potential of the targeted nanoparticle system for the delivery of an antibody alone or in combination with other drugs across the BBB/BTB to improve the therapeutic outcome.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Fitogênicos/administração & dosagem , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Camptotecina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Trastuzumab/administração & dosagem , Animais , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Combinação de Medicamentos , Feminino , Humanos , Camundongos , Nanopartículas/química , Açúcares Ácidos/química , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Biomed Sci ; 26(1): 85, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31647037

RESUMO

INTRODUCTION: Efficacy and safety are critical concerns when designing drug carriers. Nanoparticles are a particular type of carrier that has gained recent attention in cancer therapeutics. METHODS: In this study, we assess the safety profile of IT-101, a nanoparticle formed by self-assembly of camptothecin (CPT) conjugated cyclodextrin-based polymers. IT-101 delivers CPT to target cancer cells in animal models of numerous human cancers and in humans. Previous data from preclinical and clinical trials indicate that IT-101 has no notable immunological side effects. However, there have been no published studies focused on evaluating the effects of IT-101 on host immune systems. RESULTS: In this work, we demonstrate that IT-101 diminished initial host immune response following first injection of the nanopharmaceutical and induced NK cell activation and T cell proliferation upon further IT-101 exposure. Additionally, IT-101 could attenuate tumor growth more efficiently than CPT treatment only. CONCLUSIONS: Drugs administration in whole-body circulation may lead to poorly bioavailable in central nervous system and often has toxic effects on peripheral tissues. Conjugated with cyclodextrin-based polymers not only reduce adverse effects but also modulate the immune responses to elevate drug efficacy. These immune responses may potentially facilitate actions of immune blockage, such as PD1/PDL1 in cancer treatment.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Antineoplásicos/administração & dosagem , Camptotecina/administração & dosagem , Celulose/administração & dosagem , Ciclodextrinas/administração & dosagem , Imunidade Inata/efeitos dos fármacos , Nanopartículas/administração & dosagem , Animais , Camundongos , Organismos Livres de Patógenos Específicos
4.
Bioeng Transl Med ; 4(1): 30-37, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30680316

RESUMO

HER2-targeted therapies effectively control systemic disease, but their efficacy against brain metastases is hindered by their low penetration of the blood-brain and blood-tumor barriers (BBB and BTB). We investigate brain uptake and antitumor efficacy of transferrin receptor (TfR)-targeted, therapeutic nanoparticles designed to transcytose the BBB/BTB in three murine models. Two known models involving intracranial (IC) or intracardiac (ICD) injection of human breast cancer cells were employed, as was a third model developed here involving intravenous (IV) injection of the cells to form whole-body tumors that eventually metastasize to the brain. We show the method of establishing brain metastases significantly affects therapeutic BBB/BTB penetration. Free drug accumulates and delays growth in IC- and ICD-formed brain tumors, while non-targeted nanoparticles show uptake and inhibition only in IC-established metastases. TfR-targeted nanoparticles accumulate and significantly delay growth in all three models, suggesting the IV model maintains a more intact BBB/BTB than the other models.

5.
J Gastrointest Oncol ; 8(6): 962-969, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29299355

RESUMO

BACKGROUND: CRLX101 is an investigational nanoparticle-drug conjugate with a camptothecin payload. Preclinical evidence indicated preferential uptake in tumors, and tumor xenograft models demonstrate superiority of CRLX101 over irinotecan. A pilot trial was conducted at recommended phase 2 dosing (RP2D) using the bimonthly schedule to assess preferential uptake of CRLX101 in tumor vs. adjacent normal tissue in endoscopically accessible tumors in chemotherapy-refractory gastroesophageal cancer. Results from the biopsies were previously reported and herein we present the clinical outcomes. METHODS: Patients initiated CRLX101 dosed at RP2D (15 mg/m2) on days 1 and 15 of a 28-day cycle. Detection of preferential CRLX101 tumor uptake was the primary endpoint and objective response rate (ORR) was a secondary endpoint. With a sample size of ten patients, the study had 90% power to detect ≥1 responder if the true response rate is ≥21%. RESULTS: Between Dec. 2012 and Dec. 2014, ten patients with chemotherapy-refractory (median 2 prior lines of therapy, range 1-4) gastric adenocarcinoma were enrolled. The median time-to-progression was 1.7 months. Best response was seen in one patient with stable disease (SD) for 8 cycles. Only ≥ grade 3 drug-related toxicity occurred in one patient with grade 3 cardiac chest pain who was able to resume therapy after CRLX101 was reduced to 12 mg/m2. CONCLUSIONS: Bimonthly CRLX101 demonstrated minimal activity with SD as best response in this heavily pretreated population. Future efforts with CRLX101 in gastric cancer should focus on combination and more dose-intensive strategies given its favorable toxicity profile and evidence of preferential tumor uptake.

6.
Proc Natl Acad Sci U S A ; 113(14): 3850-4, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001839

RESUMO

Nanoparticle-based therapeutics are being used to treat patients with solid tumors. Whereas nanoparticles have been shown to preferentially accumulate in solid tumors of animal models, there is little evidence to prove that intact nanoparticles localize to solid tumors of humans when systemically administered. Here, tumor and adjacent, nonneoplastic tissue biopsies are obtained through endoscopic capture from patients with gastric, gastroesophageal, or esophageal cancer who are administered the nanoparticle CRLX101. Both the pre- and postdosing tissue samples adjacent to tumors show no definitive evidence of either the nanoparticle or its drug payload (camptothecin, CPT) contained within the nanoparticle. Similar results are obtained from the predosing tumor samples. However, in nine of nine patients that were evaluated, CPT is detected in the tumor tissue collected 24-48 h after CRLX101 administration. For five of these patients, evidence of the intact deposition of CRLX101 nanoparticles in the tumor tissue is obtained. Indications of CPT pharmacodynamics from tumor biomarkers such as carbonic anhydrase IX and topoisomerase I by immunohistochemistry show clear evidence of biological activity from the delivered CPT in the posttreatment tumors.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Camptotecina/farmacocinética , Ciclodextrinas/farmacocinética , Neoplasias Esofágicas/patologia , Nanopartículas/metabolismo , Neoplasias Gástricas/patologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Camptotecina/administração & dosagem , Camptotecina/uso terapêutico , Anidrase Carbônica IX/metabolismo , Linhagem Celular Tumoral , Ciclodextrinas/administração & dosagem , Ciclodextrinas/uso terapêutico , DNA Topoisomerases Tipo I/metabolismo , Endoscopia , Humanos , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Rev Drug Discov ; 14(12): 843-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26567702

RESUMO

Small interfering RNA (siRNA)-based therapies are emerging as a promising new anticancer approach, and a small number of Phase I clinical trials involving patients with solid tumours have now been completed. Encouraging results from these pioneering clinical studies show that these new therapeutics can successfully and safely inhibit targeted gene products in patients with cancer, and have taught us important lessons regarding appropriate dosages and schedules. In this Review, we critically assess these Phase I studies and discuss their implications for future clinical trial design. Key challenges and future directions in the development of siRNA-containing anticancer therapeutics are also considered.


Assuntos
Neoplasias/tratamento farmacológico , RNA Interferente Pequeno/farmacologia , Antineoplásicos/farmacologia , Ensaios Clínicos Fase I como Assunto , Inativação Gênica , Humanos , Resultado do Tratamento
8.
Proc Natl Acad Sci U S A ; 112(40): 12486-91, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392563

RESUMO

Most therapeutic agents are excluded from entering the central nervous system by the blood-brain barrier (BBB). Receptor mediated transcytosis (RMT) is a common mechanism used by proteins, including transferrin (Tf), to traverse the BBB. Here, we prepared Tf-containing, 80-nm gold nanoparticles with an acid-cleavable linkage between the Tf and the nanoparticle core to facilitate nanoparticle RMT across the BBB. These nanoparticles are designed to bind to Tf receptors (TfRs) with high avidity on the blood side of the BBB, but separate from their multidentate Tf-TfR interactions upon acidification during the transcytosis process to allow release of the nanoparticle into the brain. These targeted nanoparticles show increased ability to cross an in vitro model of the BBB and, most important, enter the brain parenchyma of mice in greater amounts in vivo after systemic administration compared with similar high-avidity nanoparticles containing noncleavable Tf. In addition, we investigated this design with nanoparticles containing high-affinity antibodies (Abs) to TfR. With the Abs, the addition of the acid-cleavable linkage provided no improvement to in vivo brain uptake for Ab-containing nanoparticles, and overall brain uptake was decreased for all Ab-containing nanoparticles compared with Tf-containing ones. These results are consistent with recent reports of high-affinity anti-TfR Abs trafficking to the lysosome within BBB endothelium. In contrast, high-avidity, Tf-containing nanoparticles with the acid-cleavable linkage avoid major endothelium retention by shedding surface Tf during their transcytosis.


Assuntos
Encéfalo/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Transferrina/farmacocinética , Ácidos/química , Animais , Anticorpos/química , Anticorpos/imunologia , Anticorpos/metabolismo , Afinidade de Anticorpos/imunologia , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Endotélio/citologia , Endotélio/metabolismo , Feminino , Humanos , Camundongos Endogâmicos BALB C , Ligação Proteica , Receptores da Transferrina/imunologia , Receptores da Transferrina/metabolismo , Transcitose , Transferrina/química , Transferrina/metabolismo
9.
Bioconjug Chem ; 26(5): 812-6, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25879583

RESUMO

Antibody-dependent cellular cytotoxicity (ADCC) is a cytolytic mechanism that can elicit in vivo antitumor effects and can play a significant role in the efficacy of antibody treatments for cancer. Here, we prepared cetuximab, panitumumab, and rituximab containing gold nanoparticles and investigated their ability to produce an ADCC effect in vivo. Cetuximab treatment of EGFR-expressing H1975 tumor xenografts showed significant tumor regression due to the ADCC activity of the antibody in vivo, while the control antibody, panitumumab, did not. However, all three antibody containing nanoparticles are not able to suppress tumor growth in the same in vivo mouse model. The antibody containing nanoparticles localized in the tumors and did not suppress the immune function of the animals, so the lack of tumor growth suppression of the cetuximab containing nanoparticle suggests that immobilizing antibodies onto a nanoparticle significantly decreases the ability of the antibody to promote an ADCC response.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Am Soc Nephrol ; 26(11): 2691-702, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25788524

RESUMO

Accumulation of extracellular matrix derived from glomerular mesangial cells is an early feature of diabetic nephropathy. Ca(2+) signals mediated by store-operated Ca(2+) channels regulate protein production in a variety of cell types. The aim of this study was to determine the effect of store-operated Ca(2+) channels in mesangial cells on extracellular matrix protein expression. In cultured human mesangial cells, activation of store-operated Ca(2+) channels by thapsigargin significantly decreased fibronectin protein expression and collagen IV mRNA expression in a dose-dependent manner. Conversely, inhibition of the channels by 2-aminoethyl diphenylborinate significantly increased the expression of fibronectin and collagen IV. Similarly, overexpression of stromal interacting molecule 1 reduced, but knockdown of calcium release-activated calcium channel protein 1 (Orai1) increased fibronectin protein expression. Furthermore, 2-aminoethyl diphenylborinate significantly augmented angiotensin II-induced fibronectin protein expression, whereas thapsigargin abrogated high glucose- and TGF-ß1-stimulated matrix protein expression. In vivo knockdown of Orai1 in mesangial cells of mice using a targeted nanoparticle siRNA delivery system resulted in increased expression of glomerular fibronectin and collagen IV, and mice showed significant mesangial expansion compared with controls. Similarly, in vivo knockdown of stromal interacting molecule 1 in mesangial cells by recombinant adeno-associated virus-encoded shRNA markedly increased collagen IV protein expression in renal cortex and caused mesangial expansion in rats. These results suggest that store-operated Ca(2+) channels in mesangial cells negatively regulate extracellular matrix protein expression in the kidney, which may serve as an endogenous renoprotective mechanism in diabetes.


Assuntos
Canais de Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células Mesangiais/citologia , Animais , Compostos de Boro/química , Cálcio/metabolismo , Colágeno Tipo IV/metabolismo , Nefropatias Diabéticas/metabolismo , Proteínas da Matriz Extracelular/genética , Fibronectinas/metabolismo , Mesângio Glomerular/metabolismo , Glucose/química , Humanos , Íons/química , Córtex Renal/patologia , Glomérulos Renais/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Células Mesangiais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Ratos , Ratos Sprague-Dawley , Molécula 1 de Interação Estromal , Tapsigargina/química , Fator de Crescimento Transformador beta1/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(31): 11449-54, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049380

RESUMO

Nanoparticle-based experimental therapeutics are currently being investigated in numerous human clinical trials. CALAA-01 is a targeted, polymer-based nanoparticle containing small interfering RNA (siRNA) and, to our knowledge, was the first RNA interference (RNAi)-based, experimental therapeutic to be administered to cancer patients. Here, we report the results from the initial phase I clinical trial where 24 patients with different cancers were treated with CALAA-01 and compare those results to data obtained from multispecies animal studies to provide a detailed example of translating this class of nanoparticles from animals to humans. The pharmacokinetics of CALAA-01 in mice, rats, monkeys, and humans show fast elimination and reveal that the maximum concentration obtained in the blood after i.v. administration correlates with body weight across all species. The safety profile of CALAA-01 in animals is similarly obtained in humans except that animal kidney toxicities are not observed in humans; this could be due to the use of a predosing hydration protocol used in the clinic. Taken in total, the animal models do appear to predict the behavior of CALAA-01 in humans.


Assuntos
Nanopartículas/uso terapêutico , Polietilenoglicóis/uso terapêutico , Polímeros/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Animais , Coagulação Sanguínea/efeitos dos fármacos , Proteínas do Sistema Complemento/metabolismo , Citocinas/sangue , Demografia , Feminino , Haplorrinos , Humanos , Imunização , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Nanopartículas/efeitos adversos , Contagem de Plaquetas , Polietilenoglicóis/efeitos adversos , Polietilenoglicóis/farmacocinética , Polímeros/efeitos adversos , Polímeros/farmacocinética , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/farmacocinética , Ratos , Especificidade da Espécie , Resultado do Tratamento
12.
Proc Natl Acad Sci U S A ; 111(23): 8363-7, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912153

RESUMO

Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder reactions with ethylene and avoid the hydrogenation of HMF to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with high pressure ethylene over a pure-silica molecular sieve containing framework tin (Sn-Beta) to produce the Diels-Alder dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with 31% selectivity at 61% HMFA conversion after 6 h at 190 °C. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of Sn-Beta for 2 h to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 46% selectivity at 28% MMFC conversion or in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) for 6 h to produce MMBC with 81% selectivity at 26% MMFC conversion. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder dehydration product is observed.


Assuntos
Reação de Cicloadição/métodos , Etilenos/química , Furaldeído/análogos & derivados , Ácidos Ftálicos/síntese química , Ácido Benzoico/química , Catálise , Furaldeído/química , Furanos/química , Ácidos de Lewis/química , Modelos Químicos , Estrutura Molecular , Oxirredução , Ácidos Ftálicos/química , Dióxido de Silício/química , Estanho/química , Água/química , Zeolitas/química
13.
Adv Chronic Kidney Dis ; 20(6): 500-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24206602

RESUMO

Nanoparticles are an enabling technology for the creation of tissue-/cell-specific therapeutics that have been investigated extensively as targeted therapeutics for cancer. The kidney, specifically the glomerulus, is another accessible site for nanoparticle delivery that has been relatively overlooked as a target organ. Given the medical need for the development of more potent, kidney-targeted therapies, the use of nanoparticle-based therapeutics may be one such solution to this problem. Here, we review the literature on nanoparticle targeting of the glomerulus. Specifically, we provide a broad overview of nanoparticle-based therapeutics and how the unique structural characteristics of the glomerulus allow for selective, nanoparticle targeting of this area of the kidney. We then summarize literature examples of nanoparticle delivery to the glomerulus and elaborate on the appropriate nanoparticle design criteria for glomerular targeting. Finally, we discuss the behavior of nanoparticles in animal models of diseased glomeruli and review examples of nanoparticle therapeutic approaches that have shown promise in animal models of glomerulonephritic disease.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/metabolismo , Glomérulos Renais/metabolismo , Nanopartículas/uso terapêutico , Animais , Humanos
14.
Proc Natl Acad Sci U S A ; 110(37): 15127-32, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980155

RESUMO

Nanoparticles are currently being investigated in a number of human clinical trials. As information on how nanoparticles function in humans is difficult to obtain, animal studies that can be correlative to human behavior are needed to provide guidance for human clinical trials. Here, we report correlative studies on animals and humans for CRLX101, a 20- to 30-nm-diameter, multifunctional, polymeric nanoparticle containing camptothecin (CPT). CRLX101 is currently in phase 2 clinical trials, and human data from several of the clinical investigations are compared with results from multispecies animal studies. The pharmacokinetics of polymer-conjugated CPT (indicative of the CRLX101 nanoparticles) in mice, rats, dogs, and humans reveal that the area under the curve scales linearly with milligrams of CPT per square meter for all species. Plasma concentrations of unconjugated CPT released from CRLX101 in animals and humans are consistent with each other after accounting for differences in serum albumin binding of CPT. Urinary excretion of polymer-conjugated CPT occurs primarily within the initial 24 h after dosing in animals and humans. The urinary excretion dynamics of polymer-conjugated and unconjugated CPT appear similar between animals and humans. CRLX101 accumulates into solid tumors and releases CPT over a period of several days to give inhibition of its target in animal xenograft models of cancer and in the tumors of humans. Taken in total, the evidence provided from animal models on the CRLX101 mechanism of action suggests that the behavior of CRLX101 in animals is translatable to humans.


Assuntos
Camptotecina/administração & dosagem , Ciclodextrinas/administração & dosagem , Nanoconjugados/administração & dosagem , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Área Sob a Curva , Camptotecina/farmacocinética , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Ciclodextrinas/farmacocinética , Ciclodextrinas/uso terapêutico , Cães , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Nus , Nanoconjugados/química , Nanoconjugados/uso terapêutico , Ratos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Pesquisa Translacional Biomédica
15.
Mol Pharm ; 10(7): 2558-67, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23676007

RESUMO

We have developed a new method for assembling targeted nanoparticles that utilizes the complexation between targeting agents that contain boronic acids and polymer-drug conjugates that possess diols. Here, we report the first in vivo, antitumor results of a nanoparticle formed via this new assembly methodology. A nanoparticle consisting of a mucic acid polymer conjugate of camptothecin (CPT), MAP-CPT, and containing on average one Herceptin antibody is investigated in nude mice bearing HER2 overexpressing BT-474 human breast cancer tumors. Nontargeted MAP-CPT and antibody-containing MAP-CPT nanoparticles of ca. 30-40 nm diameter and slightly negative zeta potential show prolonged in vivo circulation and similar biodistributions after intravenous tail vein injections in mice. The maximum tolerated dose (MTD) of the nontargeted and Herceptin-containing MAP-CPT nanoparticles is found to be 10 and 8 mg of CPT/kg, respectively, in mice. Mice bearing BT-474 human breast tumors treated with nontargeted MAP-CPT nanoparticles at 8 mg of CPT/kg show significant tumor growth inhibition (mean tumor volume of 63 mm(3)) when compared to irinotecan at 80 mg/kg (mean tumor volume of 575 mm(3)) and CPT at 8 mg/kg (mean tumor volume of 808 mm(3)) at the end of the study. Herceptin antibody treatment at 5.9 mg/kg results in complete tumor regressions in 5 out of 8 mice, with a mean tumor volume of 60 mm(3) at the end of the study. Mice treated with MAP-CPT nanoparticles at 1 mg of CPT/kg do not show tumor inhibition. However, all mice receiving administrations of MAP-CPT nanoparticles (1 mg of CPT/kg) that contain on average a single Herceptin molecule per nanoparticle (5.9 mg of Herceptin equivalent/kg) show complete tumor regression by the end of the study. These results demonstrate that the antitumor efficacy of nanoparticles carrying anticancer drugs can be enhanced by incorporating on average a single antibody.


Assuntos
Camptotecina/química , Nanopartículas/química , Animais , Anticorpos Monoclonais Humanizados/química , Cromatografia Líquida de Alta Pressão , Portadores de Fármacos/química , Feminino , Humanos , Camundongos , Camundongos Nus , Polímeros/química , Açúcares Ácidos/química , Trastuzumab
16.
Bioconjug Chem ; 24(4): 669-77, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23461746

RESUMO

The delivery of therapeutics via nanoscaled vehicles for solid cancer treatment can be enhanced by the incorporation of a targeting capability. Here, we describe a new method for assembling a targeted nanoparticle that utilizes the reversible covalent complexation between boronic acids and diols to achieve a targeted nanoparticle for the delivery of the anticancer drug camptothecin (CPT). CPT is conjugated to a biocompatible, hydrophilic copolymer of mucic acid and PEG (MAP). When this polymer-drug conjugate is placed in water, it self-assembles into MAP-CPT nanoparticles of ca. 30 nm (diameter) and slightly negative zeta potential. The antibody Herceptin is attached to a boronic acid via a polyethylene glycol (PEG) spacer, and this boronic acid-containing targeting moiety is complexed with the diol-containing MAP to form a targeted MAP-CPT nanoparticle. The addition of Herceptin targeting agent to the MAP-CPT nanoparticles yields targeted MAP-CPT nanoparticles with increased nanoparticle size to ca. 40 nm (diameter). The main mechanisms of CPT release from MAP-CPT nanoparticles are found by in vitro analysis to be hydrolysis and nanoparticle disruption by fat. Cellular uptake of nanoparticles is enhanced by 70% compared to nontargeted version by the incorporation of a single Herceptin antibody targeting agent per nanoparticle. This single Herceptin antibody targeted MAP-CPT nanoparticle system carries ca. 60 CPT molecules per nanoparticle and shows prolonged plasma circulation with an elimination half-life of 21.2 h and AUC value of 2766 µg.h/mL at a 10 mg CPT/kg tail vein injection in mice.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/química , Camptotecina/farmacologia , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Açúcares Ácidos/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Circulação Sanguínea/efeitos dos fármacos , Camptotecina/administração & dosagem , Camptotecina/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Peso Molecular , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície
17.
Invest New Drugs ; 31(4): 986-1000, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23397498

RESUMO

Patients with advanced solid malignancies were enrolled to an open-label, single-arm, dose-escalation study, in which CRLX101 was administered intravenously over 60 min among two dosing schedules, initially weekly at 6, 12, and 18 mg/m(2) and later bi-weekly at 12, 15, and 18 mg/m(2). The maximum tolerated dose (MTD) was determined at 15 mg/m(2) bi-weekly, and an expansion phase 2a study was completed. Patient samples were obtained for pharmacokinetic (PK) and pharmacodynamic (PD) assessments. Response was evaluated per RECIST criteria v1.0 every 8 weeks. Sixty-two patients (31 male; median age 63 years, range 39-79) received treatment. Bi-weekly dosing was generally well tolerated with myelosuppression being the dose-limiting toxicity. Among all phase 1/2a patients receiving the MTD (n = 44), most common grade 3/4 adverse events were neutropenia and fatigue. Evidence of systemic plasma exposure to both the polymer-conjugated and unconjugated CPT was observed in all treated patients. Mean elimination unconjugated CPT Tmax values ranged from 17.7 to 24.5 h, and maximum plasma concentrations and areas under the curve were generally proportional to dose for both polymer-conjugated and unconjugated CPT. Best overall response was stable disease in 28 patients (64 %) treated at the MTD and 16 (73 %) of a subset of NSCLC patients. Median progression-free survival (PFS) for patients treated at the MTD was 3.7 months and for the subset of NSCLC patients was 4.4 months. These combined phase 1/2a data demonstrate encouraging safety, pharmacokinetic, and efficacy results. Multinational phase 2 clinical development of CRLX101 across multiple tumor types is ongoing.


Assuntos
Camptotecina/uso terapêutico , Celulose/uso terapêutico , Ciclodextrinas/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Adulto , Idoso , Área Sob a Curva , Biópsia , Camptotecina/efeitos adversos , Camptotecina/sangue , Camptotecina/farmacocinética , Celulose/efeitos adversos , Celulose/sangue , Celulose/farmacocinética , Ciclodextrinas/efeitos adversos , Ciclodextrinas/sangue , Ciclodextrinas/farmacocinética , Demografia , Intervalo Livre de Doença , Relação Dose-Resposta a Droga , Feminino , Humanos , Imuno-Histoquímica , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Nanopartículas/efeitos adversos , Estadiamento de Neoplasias , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Resultado do Tratamento
18.
J Control Release ; 159(3): 384-92, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22342644

RESUMO

Systemic delivery of siRNA to solid tumors remains challenging. In this study, we investigated the systemic delivery of a siRNA nanoparticle targeting ribonucleotide reductase subunit M2 (RRM2), and evaluated its intratumoral kinetics, efficacy and mechanism of action. Knockdown of RRM2 by an RNAi mechanism strongly inhibited cell growth in head and neck squamous cell carcinoma (HNSCC) and non-small cell lung cancer (NSCLC) cell lines. In a mouse xenograft model of HNSCC, a single intravenous injection led to the accumulation of intact nanoparticles in the tumor that disassembled over a period of at least 3days, leading to target gene knockdown lasting at least 10days. A four-dose schedule of siRNA nanoparticle delivering RRM2 siRNA targeted to HNSCC tumors significantly reduced tumor progression by suppressing cell proliferation and inducing apoptosis. These results show promise for the use of RRM2 siRNA-based therapy for HNSCC and possibly NSCLC.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Nanopartículas/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Ribonucleosídeo Difosfato Redutase/antagonistas & inibidores , Animais , Western Blotting , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imuno-Histoquímica , Injeções Intravenosas , Camundongos , Camundongos Nus , Microscopia Confocal , RNA Interferente Pequeno/genética , Ribonucleosídeo Difosfato Redutase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Proc Natl Acad Sci U S A ; 108(16): 6656-61, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21464325

RESUMO

Nanoparticles are being investigated for numerous medical applications and are showing potential as an emerging class of carriers for drug delivery. Investigations on how the physicochemical properties (e.g., size, surface charge, shape, and density of targeting ligands) of nanoparticles enable their ability to overcome biological barriers and reach designated cellular destinations in sufficient amounts to elicit biological efficacy are of interest. Despite proven success in nanoparticle accumulation at cellular locations and occurrence of downstream therapeutic effects (e.g., target gene inhibition) in a selected few organs such as tumor and liver, reports on effective delivery of engineered nanoparticles to other organs still remain scarce. Here, we show that nanoparticles of ~75 ± 25-nm diameters target the mesangium of the kidney. These data show the effects of particle diameter on targeting the mesangium of the kidney. Because many diseases originate from this area of the kidney, our findings establish design criteria for constructing nanoparticle-based therapeutics for targeting diseases that involve the mesangium of the kidney.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Mesângio Glomerular/ultraestrutura , Ouro/farmacologia , Nanopartículas Metálicas/ultraestrutura , Animais , Feminino , Ouro/química , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula
20.
J Invest Dermatol ; 131(2): 453-60, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20944646

RESUMO

Systemically delivered small interfering RNA (siRNA) therapies for cancer have begun clinical development. The effects of siRNA-mediated knockdown of ribonucleotide reductase subunit-2 (RRM2), a rate-limiting enzyme in cell replication, were investigated in malignant melanoma, a cancer with a paucity of effective treatment options. A panel of human melanoma cell lines was transfected with siRNA to induce the knockdown of RRM2. Sequence-specific, siRNA-mediated inhibition of RRM2 effectively blocked cell proliferation and induced G1/S-phase cell cycle arrest. This effect was independent of the activating oncogenic mutations in the tested cell lines. Synergistic inhibition of melanoma cell proliferation was achieved using the combination of siRNA targeting RRM2 and temozolomide, an analog of the current standard of care for melanoma chemotherapy. In conclusion, siRNA-mediated RRM2 knockdown significantly inhibits proliferation of melanoma cell lines with different oncogenic mutations with synergistic enhancement in combination with temozolomide.


Assuntos
Proliferação de Células/efeitos dos fármacos , Dacarbazina/análogos & derivados , Inativação Gênica/efeitos dos fármacos , Melanoma/patologia , RNA Interferente Pequeno/farmacologia , Ribonucleosídeo Difosfato Redutase/genética , Neoplasias Cutâneas/patologia , Antineoplásicos Alquilantes/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dacarbazina/farmacologia , Fase G1/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Fase S/efeitos dos fármacos , Neoplasias Cutâneas/metabolismo , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA