Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Clin Endocrinol Metab ; 109(9): e1697-e1707, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38686701

RESUMO

CONTEXT: The role of glucagon-like peptide-1 (GLP-1) in type 2 diabetes (T2D) and obesity is not fully understood. OBJECTIVE: We investigate the association of cardiometabolic, diet, and lifestyle parameters on fasting and postprandial GLP-1 in people at risk of, or living with, T2D. METHODS: We analyzed cross-sectional data from the two Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohorts, cohort 1 (n = 2127) individuals at risk of diabetes; cohort 2 (n = 789) individuals with new-onset T2D. RESULTS: Our multiple regression analysis reveals that fasting total GLP-1 is associated with an insulin-resistant phenotype and observe a strong independent relationship with male sex, increased adiposity, and liver fat, particularly in the prediabetes population. In contrast, we showed that incremental GLP-1 decreases with worsening glycemia, higher adiposity, liver fat, male sex, and reduced insulin sensitivity in the prediabetes cohort. Higher fasting total GLP-1 was associated with a low intake of wholegrain, fruit, and vegetables in people with prediabetes, and with a high intake of red meat and alcohol in people with diabetes. CONCLUSION: These studies provide novel insights into the association between fasting and incremental GLP-1, metabolic traits of diabetes and obesity, and dietary intake, and raise intriguing questions regarding the relevance of fasting GLP-1 in the pathophysiology T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta , Peptídeo 1 Semelhante ao Glucagon , Estilo de Vida , Estado Pré-Diabético , Humanos , Masculino , Feminino , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Estudos Transversais , Pessoa de Meia-Idade , Estado Pré-Diabético/sangue , Estado Pré-Diabético/metabolismo , Idoso , Adulto , Resistência à Insulina , Jejum/sangue , Obesidade/sangue , Obesidade/metabolismo , Estudos de Coortes , Glicemia/metabolismo , Glicemia/análise , Adiposidade/fisiologia
2.
Eur Heart J Cardiovasc Pharmacother ; 9(6): 536-545, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37253618

RESUMO

BACKGROUND AND AIMS: The efficacy of statin therapy is hindered by intolerance to the therapy, leading to discontinuation. Variants in SLCO1B1, which encodes the hepatic transporter OATB1B1, influence statin pharmacokinetics, resulting in altered plasma concentrations of the drug and its metabolites. Current pharmacogenetic guidelines require sequencing of the SLCO1B1 gene, which is more expensive and less accessible than genotyping. In this study, we aimed to develop an easy, clinically implementable functional gene risk score (GRS) of common variants in SLCO1B1 to identify patients at risk of statin intolerance. METHODS AND RESULTS: A GRS was developed from four common variants in SLCO1B1. In statin users from Tayside, Scotland, UK, those with a high-risk GRS had increased odds across three phenotypes of statin intolerance [general statin intolerance (GSI): ORGSI 2.42; 95% confidence interval (CI): 1.29-4.31, P = 0.003; statin-related myopathy: ORSRM 2.51; 95% CI: 1.28-4.53, P = 0.004; statin-related suspected rhabdomyolysis: ORSRSR 2.85; 95% CI: 1.03-6.65, P = 0.02]. In contrast, using the Val174Ala genotype alone or the recommended OATP1B1 functional phenotypes produced weaker and less reliable results. A meta-analysis with results from adjudicated cases of statin-induced myopathy in the PREDICTION-ADR Consortium confirmed these findings (ORVal174Ala 1.99; 95% CI: 1.01-3.95, P = 0.048; ORGRS 1.76; 95% CI: 1.16-2.69, P = 0.008). For those requiring high-dose statin therapy, the high-risk GRS was more consistently associated with the time to onset of statin intolerance amongst the three phenotypes compared with Val174Ala (GSI: HRVal174Ala 2.49; 95% CI: 1.09-5.68, P = 0.03; HRGRS 2.44; 95% CI: 1.46-4.08, P < 0.001). Finally, sequence kernel association testing confirmed that rare variants in SLCO1B1 are associated with the risk of intolerance (P = 0.02). CONCLUSION: We provide evidence that a GRS based on four common SLCO1B1 variants provides an easily implemented genetic tool that is more reliable than the current recommended practice in estimating the risk and predicting early-onset statin intolerance.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Musculares , Humanos , Genótipo , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Doenças Musculares/induzido quimicamente , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Fenótipo , Fatores de Risco
3.
Diabetes Care ; 44(12): 2673-2682, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607834

RESUMO

OBJECTIVE: Sulfonylureas, the first available drugs for the management of type 2 diabetes, remain widely prescribed today. However, there exists significant variability in glycemic response to treatment. We aimed to establish heritability of sulfonylurea response and identify genetic variants and interacting treatments associated with HbA1c reduction. RESEARCH DESIGN AND METHODS: As an initiative of the Metformin Genetics Plus Consortium (MetGen Plus) and the DIabetes REsearCh on patient straTification (DIRECT) consortium, 5,485 White Europeans with type 2 diabetes treated with sulfonylureas were recruited from six referral centers in Europe and North America. We first estimated heritability using the generalized restricted maximum likelihood approach and then undertook genome-wide association studies of glycemic response to sulfonylureas measured as HbA1c reduction after 12 months of therapy followed by meta-analysis. These results were supported by acute glipizide challenge in humans who were naïve to type 2 diabetes medications, cis expression quantitative trait loci (eQTL), and functional validation in cellular models. Finally, we examined for possible drug-drug-gene interactions. RESULTS: After establishing that sulfonylurea response is heritable (mean ± SEM 37 ± 11%), we identified two independent loci near the GXYLT1 and SLCO1B1 genes associated with HbA1c reduction at a genome-wide scale (P < 5 × 10-8). The C allele at rs1234032, near GXYLT1, was associated with 0.14% (1.5 mmol/mol), P = 2.39 × 10-8), lower reduction in HbA1c. Similarly, the C allele was associated with higher glucose trough levels (ß = 1.61, P = 0.005) in healthy volunteers in the SUGAR-MGH given glipizide (N = 857). In 3,029 human whole blood samples, the C allele is a cis eQTL for increased expression of GXYLT1 (ß = 0.21, P = 2.04 × 10-58). The C allele of rs10770791, in an intronic region of SLCO1B1, was associated with 0.11% (1.2 mmol/mol) greater reduction in HbA1c (P = 4.80 × 10-8). In 1,183 human liver samples, the C allele at rs10770791 is a cis eQTL for reduced SLCO1B1 expression (P = 1.61 × 10-7), which, together with functional studies in cells expressing SLCO1B1, supports a key role for hepatic SLCO1B1 (encoding OATP1B1) in regulation of sulfonylurea transport. Further, a significant interaction between statin use and SLCO1B1 genotype was observed (P = 0.001). In statin nonusers, C allele homozygotes at rs10770791 had a large absolute reduction in HbA1c (0.48 ± 0.12% [5.2 ± 1.26 mmol/mol]), equivalent to that associated with initiation of a dipeptidyl peptidase 4 inhibitor. CONCLUSIONS: We have identified clinically important genetic effects at genome-wide levels of significance, and important drug-drug-gene interactions, which include commonly prescribed statins. With increasing availability of genetic data embedded in clinical records these findings will be important in prescribing glucose-lowering drugs.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Funções Verossimilhança , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Metformina/uso terapêutico , Compostos de Sulfonilureia/uso terapêutico
4.
Clin Pharmacol Ther ; 110(3): 816-825, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34213766

RESUMO

Real-world prescribing of drugs differs from the experimental systems, physiological-pharmacokinetic models, and clinical trials used in drug development and licensing, with drugs often used in patients with multiple comorbidities with resultant polypharmacy. The increasing availability of large biobanks linked to electronic healthcare records enables the potential to identify novel drug-gene interactions in large populations of patients. In this study we used three Scottish cohorts and UK Biobank to identify drug-gene interactions for the 50 most commonly used drugs and 162 variants in genes involved in drug pharmacokinetics. We defined two phenotypes based upon prescribing behavior-drug-stop or dose-decrease. Using this approach, we replicate 11 known drug-gene interactions including, for example, CYP2C9/CYP2C8 variants and sulfonylurea/thiazolidinedione prescribing and ABCB1/ABCG2 variants and statin prescribing. We identify eight novel associations after Bonferroni correction, three of which are replicated or validated in the UK Biobank or have other supporting results: The C-allele at rs4918758 in CYP2C9 was associated with a 25% (15-44%) lower odds of dose reduction of quinine, P = 1.6 × 10-5 ; the A-allele at rs9895420 in ABCC3 was associated with a 46% (24-62%) reduction in odds of dose reduction with doxazosin, P = 1.2 × 10-4 , and altered blood pressure response in the UK Biobank; the CYP2D6*2 variant was associated with a 30% (18-40%) reduction in odds of stopping ramipril treatment, P = 1.01 × 10-5 , with similar results seen for enalapril and lisinopril and with other CYP2D6 variants. This study highlights the scope of using large population bioresources linked to medical record data to explore drug-gene interactions at scale.


Assuntos
Interações Medicamentosas/genética , Preparações Farmacêuticas/administração & dosagem , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2D6/genética , Registros Eletrônicos de Saúde , Genótipo , Humanos , Fenótipo , Polimedicação
5.
PLoS Med ; 17(6): e1003149, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559194

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (<5% or ≥5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p < 0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction models outperformed existing noninvasive NAFLD prediction tools. One limitation is that these analyses were performed in adults of European ancestry residing in northern Europe, and it is unknown how well these findings will translate to people of other ancestries and exposed to environmental risk factors that differ from those of the present cohort. Another key limitation of this study is that the prediction was done on a binary outcome of liver fat quantity (<5% or ≥5%) rather than a continuous one. CONCLUSIONS: In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see: https://www.predictliverfat.org/) and made it available to the community. TRIAL REGISTRATION: ClinicalTrials.gov NCT03814915.


Assuntos
Fígado Gorduroso/etiologia , Aprendizado de Máquina , Complicações do Diabetes/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Estudos Prospectivos , Reprodutibilidade dos Testes , Medição de Risco
6.
Diabetologia ; 62(9): 1601-1615, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31203377

RESUMO

AIMS/HYPOTHESIS: Here, we describe the characteristics of the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) epidemiological cohorts at baseline and follow-up examinations (18, 36 and 48 months of follow-up). METHODS: From a sampling frame of 24,682 adults of European ancestry enrolled in population-based cohorts across Europe, participants at varying risk of glycaemic deterioration were identified using a risk prediction algorithm (based on age, BMI, waist circumference, use of antihypertensive medication, smoking status and parental history of type 2 diabetes) and enrolled into a prospective cohort study (n = 2127) (cohort 1, prediabetes risk). We also recruited people from clinical registries with type 2 diabetes diagnosed 6-24 months previously (n = 789) into a second cohort study (cohort 2, diabetes). Follow-up examinations took place at ~18 months (both cohorts) and at ~48 months (cohort 1) or ~36 months (cohort 2) after baseline examinations. The cohorts were studied in parallel using matched protocols across seven clinical centres in northern Europe. RESULTS: Using ADA 2011 glycaemic categories, 33% (n = 693) of cohort 1 (prediabetes risk) had normal glucose regulation and 67% (n = 1419) had impaired glucose regulation. Seventy-six per cent of participants in cohort 1 was male. Cohort 1 participants had the following characteristics (mean ± SD) at baseline: age 62 (6.2) years; BMI 27.9 (4.0) kg/m2; fasting glucose 5.7 (0.6) mmol/l; 2 h glucose 5.9 (1.6) mmol/l. At the final follow-up examination the participants' clinical characteristics were as follows: fasting glucose 6.0 (0.6) mmol/l; 2 h OGTT glucose 6.5 (2.0) mmol/l. In cohort 2 (diabetes), 66% (n = 517) were treated by lifestyle modification and 34% (n = 272) were treated with metformin plus lifestyle modification at enrolment. Fifty-eight per cent of participants in cohort 2 was male. Cohort 2 participants had the following characteristics at baseline: age 62 (8.1) years; BMI 30.5 (5.0) kg/m2; fasting glucose 7.2 (1.4) mmol/l; 2 h glucose 8.6 (2.8) mmol/l. At the final follow-up examination, the participants' clinical characteristics were as follows: fasting glucose 7.9 (2.0) mmol/l; 2 h mixed-meal tolerance test glucose 9.9 (3.4) mmol/l. CONCLUSIONS/INTERPRETATION: The IMI DIRECT cohorts are intensely characterised, with a wide-variety of metabolically relevant measures assessed prospectively. We anticipate that the cohorts, made available through managed access, will provide a powerful resource for biomarker discovery, multivariate aetiological analyses and reclassification of patients for the prevention and treatment of type 2 diabetes.


Assuntos
Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Idoso , Glicemia/efeitos dos fármacos , Estudos de Coortes , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Masculino , Metformina/uso terapêutico , Pessoa de Meia-Idade , Estado Pré-Diabético/sangue , Estado Pré-Diabético/epidemiologia , Estudos Prospectivos
7.
Diabetes Care ; 39(11): 1902-1908, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27271184

RESUMO

OBJECTIVE: Thiazolidinediones (TZDs) are putatively transported into the liver by OATP1B1 (encoded by SLCO1B1) and metabolized by CYP450 2C8 enzyme (encoded by CYP2C8). While CYP2C8*3 has been shown to alter TZD pharmacokinetics, it has not been shown to alter efficacy. RESEARCH DESIGN AND METHODS: We genotyped 833 Scottish patients with type 2 diabetes treated with pioglitazone or rosiglitazone and jointly investigated association of variants in these two genes with therapeutic outcome. RESULTS: The CYP2C8*3 variant was associated with reduced glycemic response to rosiglitazone (P = 0.01) and less weight gain (P = 0.02). The SLCO1B1 521T>C variant was associated with enhanced glycemic response to rosiglitazone (P = 0.04). The super responders defined by combined genotypes at CYP2C8 and SLCO1B1 had a 0.39% (4 mmol/mol) greater HbA1c reduction (P = 0.006) than the poor responders. Neither of the variants had a significant impact on pioglitazone response. CONCLUSIONS: These results show that variants in CYP2C8 and SLCO1B1 have a large clinical impact on the therapeutic response to rosiglitazone and highlight the importance of studying transporter and metabolizing genes together in pharmacogenetics.


Assuntos
Citocromo P-450 CYP2C8/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Tiazolidinedionas/uso terapêutico , Idoso , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Genótipo , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Farmacogenética , Pioglitazona , Polimorfismo de Nucleotídeo Único , Rosiglitazona , Escócia , Resultado do Tratamento , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA