Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pediatr Surg Int ; 38(12): 2045-2051, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36264345

RESUMO

PURPOSE: To describe demographic, clinical, diagnostic and therapeutic aspects of pediatric patients with benign adipocytic tumors admitted to a high complexity teaching hospital from 2007 to 2021. METHODS: Retrospective observational descriptive study. Patient information was retrieved from clinical records. A descriptive analysis was carried out for qualitative data and frequencies were calculated for quantitative data. RESULTS: 76 patients were included with a mean age of 7.5 years old where 60.5% were boys. The main symptom was a mass (73.7%) mostly found in the lower limbs (23.6%). Congenital birth defects were identified in 48.6% of the cases. Preoperative imaging was available in 78.9% of the patients allowing characterization of lesions or differential diagnosis. The therapeutic goal was resection with negative margins, which was feasible in all cases except for one case. The histopathological diagnosis was lipoma in 68.4% of the cases followed by lipoblastoma in 13.1%. The mean follow-up period was 17.9 months. 79.7% of the patients were asymptomatic at their last out-patient visit. CONCLUSION: Benign adipocytic tumors constitute a wide spectrum of lesions, which involve diverse anatomic segments from the neural axis to the inguinoscrotal region. The present work contributes to the general understanding of the clinical presentation and differential diagnosis for these infrequent neoplasms.


Assuntos
Lipoblastoma , Masculino , Criança , Humanos , Feminino , Estudos Retrospectivos , Diagnóstico Diferencial , Hospitalização , Hospitais de Ensino
2.
Artigo em Inglês | MEDLINE | ID: mdl-36998700

RESUMO

Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS.

3.
IEEE Trans Med Imaging ; 40(12): 3748-3761, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34264825

RESUMO

Lung cancer is by far the leading cause of cancer death in the US. Recent studies have demonstrated the effectiveness of screening using low dose CT (LDCT) in reducing lung cancer related mortality. While lung nodules are detected with a high rate of sensitivity, this exam has a low specificity rate and it is still difficult to separate benign and malignant lesions. The ISBI 2018 Lung Nodule Malignancy Prediction Challenge, developed by a team from the Quantitative Imaging Network of the National Cancer Institute, was focused on the prediction of lung nodule malignancy from two sequential LDCT screening exams using automated (non-manual) algorithms. We curated a cohort of 100 subjects who participated in the National Lung Screening Trial and had established pathological diagnoses. Data from 30 subjects were randomly selected for training and the remaining was used for testing. Participants were evaluated based on the area under the receiver operating characteristic curve (AUC) of nodule-wise malignancy scores generated by their algorithms on the test set. The challenge had 17 participants, with 11 teams submitting reports with method description, mandated by the challenge rules. Participants used quantitative methods, resulting in a reporting test AUC ranging from 0.698 to 0.913. The top five contestants used deep learning approaches, reporting an AUC between 0.87 - 0.91. The team's predictor did not achieve significant differences from each other nor from a volume change estimate (p =.05 with Bonferroni-Holm's correction).


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Algoritmos , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Curva ROC , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X
4.
PLoS One ; 16(4): e0241728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901196

RESUMO

The discovery and development of novel pharmaceuticals is an area of active research mainly due to the large investments required and long payback times. As of 2016, the development of a novel drug candidate required up to $ USD 2.6 billion in investment for only 10% rate of approval by the FDA. To help decreasing the costs associated with the process, a number of in silico approaches have been developed with relatively low success due to limited predicting performance. Here, we introduced a machine learning-based algorithm as an alternative for a more accurate search of new pharmacological candidates, which takes advantage of Recurrent Neural Networks (RNN) for active molecule prediction within large databases. Our approach, termed PharmaNet was implemented here to search for ligands against specific cell receptors within 102 targets of the DUD-E database, which contains 22886 active molecules. PharmaNet comprises three main phases. First, a SMILES representation of the molecule is converted into a raw molecular image. Second, a convolutional encoder processes the data to obtain a fingerprint molecular image that is finally analyzed by a Recurrent Neural Network (RNN). This approach enables precise predictions of the molecules' target on the basis of the feature extraction, the sequence analysis and the relevant information filtered out throughout the process. Molecule Target prediction is a highly unbalanced detection problem and therefore, we propose that an adequate evaluation metric of performance is the area under the Normalized Average Precision (NAP) curve. PharmaNet largely surpasses the previous state-of-the-art method with 97.7% in the Receiver Operating Characteristic curve (ROC-AUC) and 65.5% in the NAP curve. We obtained a perfect performance for human farnesyl pyrophosphate synthase (FPPS), which is a potential target for antimicrobial and anticancer treatments. We decided to test PharmaNet for activity prediction against FPPS by searching in the CHEMBL data set. We obtained three (3) potential inhibitors that were further validated through both molecular docking and in silico toxicity prediction. Most importantly, one of this candidates, CHEMBL2007613, was predicted as a potential antiviral due to its involvement on the PCDH17 pathway, which has been reported to be related to viral infections.


Assuntos
Preparações Farmacêuticas/química , Algoritmos , Bases de Dados Factuais , Aprendizado Profundo , Humanos , Ligantes , Aprendizado de Máquina , Simulação de Acoplamento Molecular/métodos , Redes Neurais de Computação , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA