Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Brain Pathol ; : e13288, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982662

RESUMO

Abnormal alpha-synuclein (αSyn) and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim to visualize αSyn inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. The fluorescent pyrimidoindole derivative THK-565 probe was characterized by means of recombinant fibrils and brains from 10- to 11-month-old M83 mice. Concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging were subsequently performed in vivo. Structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 T as well as scanning transmission x-ray microscopy (STXM) were performed to characterize the iron deposits in the perfused brains. Immunofluorescence and Prussian blue staining were further performed on brain slices to validate the detection of αSyn inclusions and iron deposition. THK-565 showed increased fluorescence upon binding to recombinant αSyn fibrils and αSyn inclusions in post-mortem brain slices from patients with PD and M83 mice. Administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 min post-intravenous injection by wide-field fluorescence compared to nontransgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. In conclusion, we demonstrated in vivo mapping of αSyn by means of noninvasive epifluorescence and vMSOT imaging and validated the results by targeting the THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.

2.
Theranostics ; 13(12): 4217-4228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554280

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is an umbrella term referring to a group of conditions associated to fat deposition and damage of liver tissue. Early detection of fat accumulation is essential to avoid progression of NAFLD to serious pathological stages such as liver cirrhosis and hepatocellular carcinoma. Methods: We exploited the unique capabilities of transmission-reflection optoacoustic ultrasound (TROPUS), which combines the advantages of optical and acoustic contrasts, for an early-stage multi-parametric assessment of NAFLD in mice. Results: The multispectral optoacoustic imaging allowed for spectroscopic differentiation of lipid content, as well as the bio-distributions of oxygenated and deoxygenated hemoglobin in liver tissues in vivo. The pulse-echo (reflection) ultrasound (US) imaging further provided a valuable anatomical reference whilst transmission US facilitated the mapping of speed of sound changes in lipid-rich regions, which was consistent with the presence of macrovesicular hepatic steatosis in the NAFLD livers examined with ex vivo histological staining. Conclusion: The proposed multimodal approach facilitates quantification of liver abnormalities at early stages using a variety of optical and acoustic contrasts, laying the ground for translating the TROPUS approach toward diagnosis and monitoring NAFLD in patients.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Lipídeos
3.
Photoacoustics ; 32: 100532, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37645255

RESUMO

Emerging evidence indicates crosstalk between the brain and hematopoietic system following cerebral ischemia. Here, we investigated metabolism and oxygenation in the spleen and spinal cord in a transient middle cerebral artery occlusion (tMCAO) model. Sham-operated and tMCAO mice underwent [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) to assess glucose metabolism. Naïve, sham-operated and tMCAO mice underwent multispectral optoacoustic tomography (MSOT) assisted by quantitative model-based reconstruction and unmixing algorithms for accurate mapping of oxygenation patterns in peripheral tissues at 24 h after reperfusion. We found increased [18F]FDG uptake and reduced MSOT oxygen saturation, indicating hypoxia in the thoracic spinal cord of tMCAO mice compared with sham-operated mice but not in the spleen. Reduced spleen size was observed in tMCAO mice compared with sham-operated mice ex vivo. tMCAO led to an increase in the numbers of mature T cells in femoral bone marrow tissues, concomitant with a stark reduction in these cell subsets in the spleen and peripheral blood. The combination of quantitative PET and MSOT thus enabled observation of hypoxia and increased metabolic activity in the spinal cord of tMCAO mice at 24 h after occlusion compared to sham-operated mice.

4.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425954

RESUMO

Background: Abnormal alpha-synuclein and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim at visualizing alpha-synuclein inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. Methods: Fluorescently labelled pyrimidoindole-derivative THK-565 was characterized by using recombinant fibrils and brains from 10-11 months old M83 mice, which subsequently underwent in vivo concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging. The in vivo results were verified against structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 Tesla and scanning transmission X-ray microscopy (STXM) of perfused brains. Brain slice immunofluorescence and Prussian blue staining were further performed to validate the detection of alpha-synuclein inclusions and iron deposition in the brain, respectively. Results: THK-565 showed increased fluorescence upon binding to recombinant alpha-synuclein fibrils and alpha-synuclein inclusions in post-mortem brain slices from patients with Parkinson's disease and M83 mice. i.v. administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 minutes post-injection by wide-field fluorescence compared to non-transgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. Conclusion: We demonstrated in vivo mapping of alpha-synuclein by means of non-invasive epifluorescence and vMSOT imaging assisted with a targeted THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.

5.
Photoacoustics ; 23: 100285, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34354924

RESUMO

The abnormal deposition of fibrillar beta-amyloid (Aß) deposits in the brain is one of the major histopathological hallmarks of Alzheimer's disease (AD). Here, we characterized curcumin-derivative CRANAD-2 for multi-spectral optoacoustic tomography and fluorescence imaging of brain Aß deposits in the arcAß mouse model of AD cerebral amyloidosis. CRANAD-2 showed a specific and quantitative detection of Aß fibrils in vitro, even in complex mixtures, and it is capable of distinguishing between monomeric and fibrillar forms of Aß. In vivo epi-fluorescence microscopy and optoacoustic tomography after intravenous CRANAD-2 administration demonstrated higher cortical retention in arcAß compared to non-transgenic littermate mice. Immunohistochemistry showed co-localization of CRANAD-2 and Aß deposits in arcAß mouse brain sections, thus verifying the specificity of the probe. In conclusion, we demonstrate suitability of CRANAD-2 for optical detection of Aß deposits in animal models of AD pathology, which facilitates mechanistic studies and the monitoring of putative treatments targeting Aß deposits.

6.
Exp Dermatol ; 30(11): 1598-1609, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33987867

RESUMO

Optoacoustic (OA, photoacoustic) imaging capitalizes on the synergistic combination of light excitation and ultrasound detection to empower biological and clinical investigations with rich optical contrast while effectively bridging the gap between micro and macroscopic imaging realms. State-of-the-art OA embodiments consistently provide images at micron-scale resolution through superficial tissue layers by means of focused illumination that can be smoothly exchanged for acoustic-resolution images at diffuse light depths of several millimetres to centimetres via ultrasound beamforming or tomographic reconstruction. Taken together, this unique multi-scale imaging capacity opens unprecedented capabilities for high-resolution in vivo interrogations of the skin at scalable depths. Moreover, diverse anatomical and functional information is retrieved via dynamic mapping of endogenous chromophores such as haemoglobin, melanin, lipids, collagen, water and others. This, along with the use of non-ionizing radiation, facilitates a clinical translation of the OA modalities. We review recent progress in OA imaging of the skin in preclinical and clinical studies exploiting the rich contrast provided by endogenous substances in tissues. The imaging capabilities of existing approaches are discussed in the context of initial translational studies on skin cancer, inflammatory skin diseases, wounds and other conditions.


Assuntos
Técnicas Fotoacústicas , Dermatopatias/diagnóstico por imagem , Dermatopatias/patologia , Pele/diagnóstico por imagem , Pele/patologia , Animais , Humanos
7.
Neoplasia ; 22(12): 770-777, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142241

RESUMO

Development of imaging methods capable of furnishing tumor-specific morphological, functional, and molecular information is paramount for early diagnosis, staging, and treatment of breast cancer. Ultrasound (US) and optoacoustic (OA) imaging methods exhibit excellent traits for tumor imaging in terms of fast imaging speed, ease of use, excellent contrast, and lack of ionizing radiation. Here, we demonstrate simultaneous tomographic whole body imaging of optical absorption, US reflectivity, and speed of sound (SoS) in living mice. In vivo studies of 4T1 breast cancer xenografts models revealed synergistic and complementary value of the hybrid imaging approach for characterizing mammary tumors. While neovasculature surrounding the tumor areas were observed based on the vascular anatomy contrast provided by the OA data, the tumor boundaries could be discerned by segmenting hypoechoic structures in pulse-echo US images. Tumor delineation was further facilitated by enhancing the contrast and spatial resolution of the SoS maps with a full-wave inversion method. The malignant lesions could thus be distinguished from other hypoechoic regions based on the average SoS values. The reported findings corroborate the strong potential of the hybrid imaging approach for advancing cancer research in small animal models and fostering development of new clinical diagnostic approaches.


Assuntos
Neoplasias Mamárias Animais/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Tomografia/métodos , Ultrassonografia/métodos , Animais , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Mamárias Animais/patologia , Camundongos
8.
Neoplasia ; 22(9): 441-446, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32653834

RESUMO

Widespread metastasis is the major cause of death from melanoma and other types of cancer. At present, the dynamic aspects of the metastatic cascade remain enigmatic. The feasibility to track circulating melanoma cells deep within living intact organisms can greatly impact our knowledge on tumor metastasis, but existing imaging approaches lack the sensitivity, spatio-temporal resolution or penetration depth to capture flowing tumor cells over large fields of view within optically-opaque biological tissues. Vast progress with the development of optoacoustic tomography technologies has recently enabled two- and three-dimensional imaging at unprecedented frame rates in the order of hundreds of Hertz, effectively mapping up to a million image voxels within a single volumetric snapshot. Herein, we employ volumetric optoacoustic tomography for real-time visualization of passage and trapping of individual B16 melanoma cells in the whole mouse brain. Detection of individual circulating melanoma cells was facilitated by substituting blood with an artificial cerebrospinal fluid that removes the strong absorption background in the optoacoustic images. The approach can provide new opportunities for studying trafficking and accumulation of metastatic melanoma cells in different organs.


Assuntos
Encéfalo/patologia , Coração/fisiologia , Imageamento Tridimensional/métodos , Melanoma Experimental/patologia , Células Neoplásicas Circulantes/patologia , Técnicas Fotoacústicas/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Apoptose , Encéfalo/diagnóstico por imagem , Proliferação de Células , Melanoma Experimental/diagnóstico por imagem , Camundongos , Células Tumorais Cultivadas
9.
Opt Lett ; 45(7): 2006-2009, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236054

RESUMO

Laser ablation (LA) is a promising approach for minimally invasive cancer treatments. Its in vivo applicability is often impeded by the lack of efficient monitoring tools that can help to minimize collateral tissue damage and aid in determining the optimal treatment end-points. We have devised a new, to the best of our knowledge, hybrid LA approach combining simultaneous volumetric optoacoustic (OA) imaging to monitor the lesion progression accurately in real time and 3D. Time-lapse imaging of laser ablation of solid tumors was performed in a murine breast cancer model in vivo by irradiation of subcutaneous tumors with a 100 mJ short-pulsed (${\sim}{5}\;{\rm ns}$∼5ns) laser operating at 1064 nm and 100 Hz pulse repetition frequency. Local changes in the OA signal intensity ascribed to structural alterations in the tumor vasculature were clearly observed, while the OA volumetric projections recorded in vivo appeared to correlate with cross sections of the excised tumors.


Assuntos
Terapia a Laser , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/cirurgia , Técnicas Fotoacústicas/métodos , Cirurgia Assistida por Computador/métodos , Animais , Feminino , Camundongos
10.
Ultrasonics ; 103: 106097, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32078843

RESUMO

Speed of Sound (SoS) maps from ultrasound tomography (UST) provide valuable quantitative information for soft tissue characterization and identification of lesions, making this technique interesting for breast cancer detection. However, due to the complexity of the processes that characterize the interaction of ultrasonic waves with matter, classic and fast tomographic algorithms such as back-projection are not suitable. Consequently, the image reconstruction process in UST is generally slow compared to other more conventional medical tomography modalities. With the aim of facilitating the translation of this technique into real clinical practice, several reconstruction algorithms are being proposed to make image reconstruction in UST to be a fast and accurate process. The geometrical acoustic approximation is often used to reconstruct SoS with less computational burden in comparison with full-wave inversion methods. In this work, we propose a simple formulation to perform on-the-flight reconstruction for UST using geometrical acoustics with refraction correction based on quadratic Bézier polynomials. Here we demonstrate that the trajectories created with these polynomials are an accurate approximation to reproduce the refracted acoustic paths connecting the emitter and receiver transducers. The method is faster than typical acquisition times in UST. Thus, it can be considered a step towards real-time reconstructions, which may contribute to its future clinical translation.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia Mamária , Algoritmos , Técnicas In Vitro , Modelos Estatísticos , Imagens de Fantasmas
11.
Opt Lett ; 44(23): 5808-5811, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774785

RESUMO

Radiofrequency (RF) catheter ablation is widely employed for various minimally invasive procedures, including treatment of tumors, cardiac arrhythmias and varicose veins. Accurate real-time monitoring of the ablation treatments remains challenging with the existing clinical imaging modalities due to the lack of spatial or temporal resolution or insufficient tissue contrast for differentiating thermal lesions. Optoacoustic (OA) imaging has been recently suggested for monitoring temperature field and lesion progression during RF interventions. However, strong light absorption by standard metallic catheters hindered practical implementations of this approach. Herein, we introduce a new RF ablation catheter concept for combined RF ablation and OA lesion monitoring. The catheter tip encapsulates a multimode fiber bundle for OA excitation with near-infrared (NIR) light, whereas the electric current is conducted through the irrigation solution, thus avoiding direct exposure of the metallic parts to the excitation light. We optimized the catheter diameter and the saline flow rate in order to attain uniform and deep lesions. The newly introduced hybrid catheter design was successfully tested by real-time monitoring of the ablation process in smooth ventricle and rough atrium walls of a blood-filled ex vivo porcine heart, mimicking in vivo conditions in the clinical setting.

12.
Biomed Opt Express ; 10(10): 5093-5102, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31646032

RESUMO

Intravenously administered liposomes and other nano-sized particles are known to passively accumulate in solid tumors via the enhanced permeability and retention (EPR) effect, which is extensively explored toward the improvement of diagnosis and drug delivery in oncology. Agent extravasation into tumors is often hampered by the mononuclear phagocytic and renal systems, which sequester and/or eliminate most of the nanoparticles from the body. Dynamic imaging of the tumor microcirculation and bolus perfusion can thus facilitate optimization of the nanoparticle delivery. When it comes to non-invasive visualization of rapid biological dynamics in whole tumors, the currently available pre-clinical imaging modalities are commonly limited by shallow penetration, lack of suitable contrast or otherwise insufficient spatial or temporal resolution. Herein, we demonstrate the unique capabilities of a combined epi-fluorescence and optoacoustic tomography (FLOT) system for characterizing contrast agent dynamics in orthotopic breast tumors in mice. A liposomal indocyanine green (Lipo-ICG) preparation was administered intravenously with the time-lapse data continuously acquired during and after the injection procedure. In addition to the highly sensitive detection of the fluorescence agent by the epi-fluorescence modality, the volumetric multi-spectral optoacoustic tomography readings further enabled resolving deep-seated vascular structures with high spatial resolution and hence provided accurate readings of the dynamic bio-distribution of nanoparticles in the entire tumor in 3D. The synergetic combination of the two modalities can become a powerful tool in cancer research and potentially aid the diagnosis, staging and treatment guidance of certain types of cancer in the clinical setting.

13.
Phys Med Biol ; 64(18): 18TR01, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31342913

RESUMO

Clinical translation of optoacoustic imaging is fostered by the rapid technical advances in imaging performance as well as the growing number of clinicians recognizing the immense diagnostic potential of this technology. Clinical optoacoustic systems are available in multiple configurations, including hand-held and endoscopic probes as well as raster-scan approaches. The hardware design must be adapted to the accessible portion of the imaged region and other application-specific requirements pertaining the achievable depth, field of view or spatio-temporal resolution. Equally important is the adequate choice of the signal and image processing approach, which is largely responsible for the resulting imaging performance. Thus, new image reconstruction algorithms are constantly evolving in parallel to the newly-developed set-ups. This review focuses on recent progress on optoacoustic image formation algorithms and processing methods in the clinical setting. Major reconstruction challenges include real-time image rendering in two and three dimensions, efficient hybridization with other imaging modalitites as well as accurate interpretation and quantification of bio-markers, herein discussed in the context of ongoing progress in clinical translation.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Algoritmos , Animais , Endoscopia/instrumentação , Endoscopia/métodos , Desenho de Equipamento , Humanos , Imageamento Tridimensional/métodos , Neoplasias/diagnóstico por imagem , Imagens de Fantasmas
14.
PLoS One ; 14(5): e0217576, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150471

RESUMO

Doxorubicin (DOX) is a widely used chemotherapeutic anticancer drug. Its intrinsic fluorescence properties enable investigation of tumor response, drug distribution and metabolism. First phantom studies in vitro showed optoacoustic property of DOX. We therefore aimed to further investigate the optoacoustic properties of DOX in biological tissue in order to explore its potential as theranostic agent. We analysed doxorubicin hydrochloride (Dox·HCl) and liposomal encapsulated doxorubicin hydrochloride (Dox·Lipo), two common drugs for anti-cancer treatment in clinical medicine. Optoacoustic measurements revealed a strong signal of both doxorubicin substrates at 488 nm excitation wavelength. Post mortem analysis of intra-tumoral injections of DOX revealed a detectable optoacoustic signal even at three days after the injection. We thereby demonstrate the general feasibility of doxorubicin detection in biological tissue by means of optoacoustic tomography, which could be applied for high resolution imaging at mesoscopic depths dictated by effective penetration of visible light into the biological tissues.


Assuntos
Doxorrubicina/análogos & derivados , Neoplasias/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Nanomedicina Teranóstica/métodos , Tomografia/métodos , Animais , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Estudos de Viabilidade , Feminino , Humanos , Injeções Intralesionais , Camundongos , Projetos Piloto , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química
15.
Cancer Res ; 79(18): 4767-4775, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31097477

RESUMO

Mapping tumor heterogeneity and hypoxia within a living intact organism is essential for understanding the processes involved in cancer progression and assessing long-term responses to therapies. Efficient investigations into tumor hypoxia mechanisms have been hindered by the lack of intravital imaging tools capable of multiparametric probing of entire solid tumors with high spatial and temporal resolution. Here, we exploit volumetric multispectral optoacoustic tomography (vMSOT) for accurate, label-free delineation of tumor heterogeneity and dynamic oxygenation behavior. Mice bearing orthotopic MDA-MB-231 breast cancer xenografts were imaged noninvasively during rest and oxygen stress challenge, attaining time-lapse three-dimensional oxygenation maps across entire tumors with 100 µm spatial resolution. Volumetric quantification of the hypoxic fraction rendered values of 3.9% to 21.2%, whereas the oxygen saturation (sO2) rate declined at 1.7% to 2.3% per mm in all tumors when approaching their core. Three distinct functional areas (the rim, hypoxic, and normoxic cores) were clearly discernible based on spatial sO2 profiles and responses to oxygen challenge. Notably, although sO2 readings were responsive to the challenge, deoxyhemoglobin (HbR) trends exhibited little to no variations in all mice. Dynamic analysis further revealed the presence of cyclic hypoxia patterns with a 21% average discrepancy between cyclic fractions assessed via sO2 (42.2% ± 17.3%) and HbR fluctuations (63% ± 14.1%) within the hypoxic core. These findings corroborate the strong potential of vMSOT for advancing preclinical imaging of cancer and informing clinical decisions on therapeutic interventions. SIGNIFICANCE: vMSOT provides quantitative measures of volumetric hypoxic fraction and cyclic hypoxia in a label-free and noninvasive manner, providing new readouts to aid tumor staging and treatment decision making. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/18/4767/F1.large.jpg.See related commentary by Klibanov and Hu, p. 4577.


Assuntos
Neoplasias da Mama , Animais , Hipóxia Celular , Modelos Animais de Doenças , Humanos , Hipóxia , Camundongos , Oxigênio
16.
Transl Oncol ; 11(5): 1251-1258, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30103155

RESUMO

PURPOSE: Here we demonstrate the potential of multispectral optoacoustic tomography (MSOT), a new non-invasive structural and functional imaging modality, to track the growth and changes in blood oxygen saturation (sO2) in orthotopic glioblastoma (GBMs) and the surrounding brain tissues upon administration of a vascular disruptive agent (VDA). METHODS: Nude mice injected with U87MG tumor cells were longitudinally monitored for the development of orthotopic GBMs up to 15 days and observed for changes in sO2 upon administration of combretastatin A4 phosphate (CA4P, 30 mg/kg), an FDA approved VDA for treating solid tumors. We employed a newly-developed non-negative constrained approach for combined MSOT image reconstruction and unmixing in order to quantitatively map sO2 in whole mouse brains. RESULTS: Upon longitudinal monitoring, tumors could be detected in mouse brains using single-wavelength data as early as 6 days post tumor cell inoculation. Fifteen days post-inoculation, tumors had higher sO2 of 63 ± 11% (n = 5, P < .05) against 48 ± 7% in the corresponding contralateral brain, indicating their hyperoxic status. In a different set of animals, 42 days post-inoculation, tumors had lower sO2 of 42 ± 5% against 49 ± 4% (n = 3, P < .05) in the contralateral side, indicating their hypoxic status. Upon CA4P administration, sO2 in 15 days post-inoculation tumors dropped from 61 ± 9% to 36 ± 1% (n = 4, P < .01) within one hour, then reverted to pre CA4P treatment values (63 ± 6%) and remained constant until the last observation time point of 6 hours. CONCLUSION: With the help of advanced post processing algorithms, MSOT was capable of monitoring the tumor growth and assessing hemodynamic changes upon administration of VDAs in orthotopic GBMs.

17.
Opt Lett ; 43(8): 1886-1889, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29652390

RESUMO

Radio frequency (RF) catheter ablation is commonly used to eliminate dysfunctional cardiac tissue by heating via an alternating current. Clinical outcomes are highly dependent on careful anatomical guidance, electrophysiological mapping, and careful RF power titration during the procedure. Yet, current treatments rely mainly on the expertise of the surgeon to assess lesion formation, causing large variabilities in the success rate. We present an integrated catheter design suitable for simultaneous RF ablation and real-time optoacoustic monitoring of the forming lesion. The catheter design utilizes copper-coated multimode light guides capable of delivering both ablation current and near-infrared pulsed-laser illumination to the target tissue. The generated optoacoustic responses were used to visualize the ablation lesion formation in an ex-vivo bovine heart specimen in 3D. The presented catheter design enables the monitoring of ablation lesions with high spatiotemporal resolution while the overall therapy-monitoring approach remains compatible with commercially available catheter designs.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Ablação por Cateter/métodos , Cateterismo/instrumentação , Imageamento Tridimensional/métodos , Monitorização Intraoperatória/métodos , Técnicas Fotoacústicas/métodos , Animais , Desenho de Equipamento , Imagens de Fantasmas , Suínos
18.
Int J Comput Assist Radiol Surg ; 13(5): 703-711, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29546572

RESUMO

PURPOSE: Optoacoustic imaging provides high spatial resolution and the possibility to image specific functional parameters in real-time, therefore positioning itself as a promising modality for various applications. However, despite these advantages, the applicability of real-time optoacoustic imaging is generally limited due to a relatively small field of view. METHODS: With this work, we aim at presenting a path towards panoramic optoacoustic tomographic imaging without requiring additional sensors or position trackers. We propose a two-step seamless stitching method for the compounding of multiple datasets acquired with a real-time 3D optoacoustic imaging system within a panoramic scan. The employed workflow is specifically tailored to the image properties and respective challenges. RESULTS: A comparison of the presented alignment on in-vivo data shows a mean error of [Formula: see text] compared to ground truth tracking data. The presented compounding scheme integrates the physical resolution of optoacoustic data and hence can provide improved contrast in comparison with other compounding approaches based on addition or averaging. CONCLUSION: The proposed method can produce optoacoustic volumes with an enlarged field of view and improved quality compared to current methods in optoacoustic imaging. However, our study also shows challenges for panoramic scans. In this view, we discuss relevant properties, challenges, and opportunities and present an evaluation of the performance of the presented approach with different input data.


Assuntos
Imageamento Tridimensional/métodos , Técnicas Fotoacústicas/métodos , Tomografia Computadorizada por Raios X/métodos , Estudos de Viabilidade , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia
19.
Theranostics ; 7(18): 4470-4479, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158839

RESUMO

Extraction of murine cardiac functional parameters on a beat-by-beat basis is limited with the existing imaging modalities due to insufficient three-dimensional temporal resolution. Faster volumetric imaging methods enabling in vivo characterization of functional parameters are poised to advance cardiovascular research and provide a better understanding of the mechanisms underlying cardiac diseases. We present a new approach based on analyzing contrast-enhanced optoacoustic (OA) images acquired at high volumetric frame rate without using cardiac gating or other approaches for motion correction. We apply an acute murine myocardial infarction model optimized for acquisition of artifact-free optoacoustic imaging data to study cardiovascular hemodynamics. Infarcted hearts (n = 21) could be clearly differentiated from healthy controls (n = 9) based on a significantly higher pulmonary transit time (PTT) (2.25 [2.00-2.41] s versus 1.34 [1.25-1.67] s, p = 0.0235), while no statistically significant difference was observed in the heart rate (318 [252-361] bpm versus 264 [252-320] bpm, p = 0.3129). Nevertheless, nonlinear heartbeat dynamics was stronger in the healthy hearts, as evidenced by the third harmonic component in the heartbeat spectra. MRI data acquired from the same mice further revealed that the PTT increases with the size of infarction and similarly increases with reduced ejection fraction. Moreover, an inverse relationship between infarct PTT and time post-surgery was found, which suggests the occurrence of cardiac healing. In combination with the proven ability of optoacoustics to track targeted probes within the injured myocardium, our method can depict cardiac anatomy, function, and molecular signatures, with both high spatial and temporal resolution. Volumetric four-dimensional optoacoustic characterization of cardiac dynamics with supreme temporal resolution can capture cardiovascular dynamics on a beat-by-beat basis in mouse models of myocardial ischemia.


Assuntos
Coração/fisiopatologia , Infarto do Miocárdio/patologia , Miocárdio/patologia , Animais , Meios de Contraste/metabolismo , Frequência Cardíaca/fisiologia , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL
20.
Sci Rep ; 7(1): 9695, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851968

RESUMO

Photothermal therapy and ablation are commonplace medical procedures employed for treatment of tumors, vascular and brain abnormalities as well as other disorders that require selective destruction of tissues. Yet, accurate mapping of the dynamic temperature field distribution in the treated region represents an unmet clinical need, strongly affecting the clinical outcome of these interventions. We introduce a fast three-dimensional temperature mapping method based on real-time optoacoustic sensing of the treated region coupled with a thermal-diffusion-based model of heat distribution in tissues. Deviations of the optoacoustic temperature readings provided at 40  ms intervals remained below 10% in tissue-mimicking phantom experiments for temperature elevations above 3 °C, as validated by simultaneous thermocouple measurements. Performance of the new method to dynamically estimate the volumetric temperature distribution was further showcased in post-mortem mouse imaging experiments. The newly discovered capacity to non-invasively measure the temperature map in an entire treated volume with both high spatial and temporal resolutions holds potential for improving safety and efficacy of light-based therapeutic interventions.


Assuntos
Hipertermia Induzida , Técnicas Fotoacústicas , Fototerapia , Temperatura , Algoritmos , Animais , Modelos Animais de Doenças , Humanos , Hipertermia Induzida/métodos , Imageamento Tridimensional , Camundongos , Modelos Teóricos , Neoplasias/diagnóstico , Neoplasias/terapia , Imagens de Fantasmas , Fototerapia/métodos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA