Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 2(11): 1284-1304, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33199925

RESUMO

Decreased NAD+ levels have been shown to contribute to metabolic dysfunction during aging. NAD+ decline can be partially prevented by knockout of the enzyme CD38. However, it is not known how CD38 is regulated during aging, and how its ecto-enzymatic activity impacts NAD+ homeostasis. Here we show that an increase in CD38 in white adipose tissue (WAT) and the liver during aging is mediated by accumulation of CD38+ immune cells. Inflammation increases CD38 and decreases NAD+. In addition, senescent cells and their secreted signals promote accumulation of CD38+ cells in WAT, and ablation of senescent cells or their secretory phenotype decreases CD38, partially reversing NAD+ decline. Finally, blocking the ecto-enzymatic activity of CD38 can increase NAD+ through a nicotinamide mononucleotide (NMN)-dependent process. Our findings demonstrate that senescence-induced inflammation promotes accumulation of CD38 in immune cells that, through its ecto-enzymatic activity, decreases levels of NMN and NAD+.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Envelhecimento/metabolismo , Glicoproteínas de Membrana/metabolismo , NAD/biossíntese , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/imunologia , Adipócitos Brancos/metabolismo , Tecido Adiposo Branco/metabolismo , Envelhecimento/imunologia , Animais , Transplante de Medula Óssea , Senescência Celular , Células HEK293 , Humanos , Inflamação/imunologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mononucleotídeo de Nicotinamida/metabolismo , Fenótipo
3.
mBio ; 7(4)2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27381292

RESUMO

UNLABELLED: The JC and BK human polyomaviruses (JCPyV and BKPyV, respectively) establish lifelong persistent infections in the kidney. In immunosuppressed individuals, JCPyV causes progressive multifocal leukoencephalopathy (PML), a fatal neurodegenerative disease, and BKPyV causes polyomavirus-associated nephropathy (PVN). In this study, we compared JCPyV and BKPyV infections in primary human renal proximal tubule epithelial (HRPTE) cells. JCPyV established a persistent infection, but BKPyV killed the cells in 15 days. To identify the cellular factors responsible for controlling JCPyV infection and promoting viral persistence, we profiled the transcriptomes of JCPyV- and BKPyV-infected cells at several time points postinfection. We found that infection with both viruses induced interferon production but that interferon-stimulated genes (ISGs) were only activated in the JCPyV-infected cells. Phosphorylated STAT1 and IRF9, which are responsible for inducing ISGs, translocated to the nucleus of JCPyV-infected cells but did not in BKPyV-infected cells. In BKPyV-infected cells, two critical suppressors of cytokine signaling, SOCS3 and SOCS1, were induced. Infection with BKPyV but not JCPyV caused reorganization of PML bodies that are associated with inactivating antiviral responses. Blockade of the interferon receptor and neutralization of soluble interferon alpha (IFN-α) and IFN-ß partially alleviated the block to JCPyV infection, leading to enhanced infectivity. Our results show that a type I IFN response contributes to the establishment of persistent infection by JCPyV in HRPTE cells. IMPORTANCE: The human polyomaviruses JCPyV and BKPyV both establish lifelong persistent infection in the kidneys. In immunosuppressed patients, BKPyV causes significant pathology in the kidney, but JCPyV is only rarely associated with disease in this organ. The reasons behind this striking difference in kidney pathology are unknown. In this study, we show that infection of primary human renal tubule epithelial cells with JCPyV and BKPyV results in divergent innate immune responses that control JCPyV but fail to control BKPyV. This is the first study that directly compares JCPyV and BKPyV infection in vitro in the same cell type they naturally infect, and the significant differences that have been uncovered could in part explain the distinct disease outcomes.


Assuntos
Vírus BK/imunologia , Vírus BK/fisiologia , Células Epiteliais/imunologia , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Vírus JC/imunologia , Vírus JC/fisiologia , Núcleo Celular/química , Sobrevivência Celular , Células Cultivadas , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Transporte Proteico , Fator de Transcrição STAT1/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Latência Viral
4.
Cell ; 160(3): 477-88, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25619689

RESUMO

MYC is a highly pleiotropic transcription factor whose deregulation promotes cancer. In contrast, we find that Myc haploinsufficient (Myc(+/-)) mice exhibit increased lifespan. They show resistance to several age-associated pathologies, including osteoporosis, cardiac fibrosis, and immunosenescence. They also appear to be more active, with a higher metabolic rate and healthier lipid metabolism. Transcriptomic analysis reveals a gene expression signature enriched for metabolic and immune processes. The ancestral role of MYC as a regulator of ribosome biogenesis is reflected in reduced protein translation, which is inversely correlated with longevity. We also observe changes in nutrient and energy sensing pathways, including reduced serum IGF-1, increased AMPK activity, and decreased AKT, TOR, and S6K activities. In contrast to observations in other longevity models, Myc(+/-) mice do not show improvements in stress management pathways. Our findings indicate that MYC activity has a significant impact on longevity and multiple aspects of mammalian healthspan.


Assuntos
Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Envelhecimento , Animais , Tamanho Corporal , Feminino , Longevidade , Linfoma/genética , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Transcriptoma
5.
Aging (Albany NY) ; 5(12): 867-83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24323947

RESUMO

Transposable elements (TEs) were discovered by Barbara McClintock in maize and have since been found to be ubiquitous in all living organisms. Transposition is mutagenic and organisms have evolved mechanisms to repress the activity of their endogenous TEs. Transposition in somatic cells is very low, but recent evidence suggests that it may be derepressed in some cases, such as cancer development. We have found that during normal aging several families of retrotransposable elements (RTEs) start being transcribed in mouse tissues. In advanced age the expression culminates in active transposition. These processes are counteracted by calorie restriction (CR), an intervention that slows down aging. Retrotransposition is also activated in age-associated, naturally occurring cancers in the mouse. We suggest that somatic retrotransposition is a hitherto unappreciated aging process. Mobilization of RTEs is likely to be an important contributor to the progressive dysfunction of aging cells.


Assuntos
Envelhecimento/fisiologia , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/fisiologia , Genoma , Animais , Restrição Calórica , Desoxirribonucleases/metabolismo , Regulação da Expressão Gênica/fisiologia , Fígado , Camundongos , Repetições de Microssatélites , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Altern Lab Anim ; 41(4): 259-69, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24168133

RESUMO

In the field of cardiovascular research, the pig is considered to be an excellent animal model of human diseases. It is well-known that primary cultures of endothelial cells (ECs) are a powerful tool for the study of vascular physiology and pathology, and, according to the principles of the Three Rs, their use results in a substantial reduction in the numbers of experimental animals required. However, a limitation of EC culture is that the cells are not in their physiological context. Here, we describe and characterise a method for the culture of porcine vessels that overcomes the limitation of EC cultures, with the advantage of reducing the number of animals used for research purposes. The organ cultures were set-up by using an aortic cylinder obtained from the arteries of control pigs sacrificed for other experimental purposes. In order to characterise the method, vascular endothelial growth factor (VEGF) secretion, matrix metalloproteinase (MMP) activation and the vessel's structural features were evaluated during organ culture. These analyses confirm that the culture of aortic cylinder lumen, in a medium specific for ECs, results in a stable system in terms of VEGF and MMP secretion. The ECs do not undergo cell division during the organ culture, which is also the case in vivo, if no stimulation occurs. Overall, we show that this novel system closely resembles the in vivo context. Importantly, porcine aortas can be collected from either veterinary surgeries or slaughterhouses, without having to sacrifice animals specifically for the purposes of this type of research.


Assuntos
Experimentação Animal , Aorta Torácica/citologia , Células Endoteliais/metabolismo , Técnicas de Cultura de Órgãos , Animais , Feminino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Técnicas de Cultura de Órgãos/métodos , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Aging Cell ; 12(2): 247-56, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23360310

RESUMO

Replicative cellular senescence is an important tumor suppression mechanism and also contributes to aging. Progression of both cancer and aging include significant epigenetic components, but the chromatin changes that take place during cellular senescence are not known. We used formaldehyde assisted isolation of regulatory elements (FAIRE) to map genome-wide chromatin conformations. In contrast to growing cells, whose genomes are rich with features of both open and closed chromatin, FAIRE profiles of senescent cells are significantly smoothened. This is due to FAIRE signal loss in promoters and enhancers of active genes, and FAIRE signal gain in heterochromatic gene-poor regions. Chromatin of major retrotransposon classes, Alu, SVA and L1, becomes relatively more open in senescent cells, affecting most strongly the evolutionarily recent elements, and leads to an increase in their transcription and ultimately transposition. Constitutive heterochromatin in centromeric and peri-centromeric regions also becomes relatively more open, and the transcription of satellite sequences increases. The peripheral heterochromatic compartment (PHC) becomes less prominent, and centromere structure becomes notably enlarged. These epigenetic changes progress slowly after the onset of senescence, with some, such as mobilization of retrotransposable elements becoming prominent only at late times. Many of these changes have also been noted in cancer cells.


Assuntos
Senescência Celular/genética , Elementos de DNA Transponíveis , Epigênese Genética , Fibroblastos/metabolismo , Genoma Humano , Heterocromatina , Células Cultivadas , Centrômero , Eucromatina , Fibroblastos/citologia , Formaldeído , Expressão Gênica , Inativação Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Elementos Reguladores de Transcrição , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA