Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
JAMA Cardiol ; 6(11): 1308-1316, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34287644

RESUMO

Importance: Being born small for gestational age (SGA), approximately 10% of all births, is associated with increased risk of cardiovascular mortality in adulthood, but mechanistic pathways are unclear. Cardiac remodeling and dysfunction occur in fetuses SGA and children born SGA, but it is uncertain whether and how these changes persist into adulthood. Objective: To evaluate baseline cardiac function and structure and exercise capacity in young adults born SGA. Design, Setting, and Participants: This cohort study conducted from January 2015 to January 2018 assessed a perinatal cohort born at a tertiary university hospital in Spain between 1975 and 1995. Participants included 158 randomly selected young adults aged 20 to 40 years born SGA (birth weight below the 10th centile) or with intrauterine growth within standard reference ranges (controls). Participants provided their medical history, filled out questionnaires regarding smoking and physical activity habits, and underwent incremental cardiopulmonary exercise stress testing, cardiac magnetic resonance imaging, and a physical examination, with blood pressure, glucose level, and lipid profile data collected. Exposure: Being born SGA. Main Outcomes and Measures: Cardiac structure and function assessed by cardiac magnetic resonance imaging, including biventricular end-diastolic shape analysis. Exercise capacity assessed by incremental exercise stress testing. Results: This cohort study included 81 adults born SGA (median age at study, 34.4 years [IQR, 30.8-36.7 years]; 43 women [53%]) and 77 control participants (median age at study, 33.7 years [interquartile range (IQR), 31.0-37.1 years]; 33 women [43%]). All participants were of White race/ethnicity and underwent imaging, whereas 127 participants (80% of the cohort; 66 control participants and 61 adults born SGA) completed the exercise test. Cardiac shape analysis showed minor changes at rest in right ventricular geometry (DeLong test z, 2.2098; P = .02) with preserved cardiac function in individuals born SGA. However, compared with controls, adults born SGA had lower exercise capacity, with decreased maximal workload (mean [SD], 180 [62] W vs 214 [60] W; P = .006) and oxygen consumption (median, 26.0 mL/min/kg [IQR, 21.5-33.5 mL/min/kg vs 29.5 mL/min/kg [IQR, 24.0-36.0 mL/min/kg]; P = .02). Exercise capacity was significantly correlated with left ventricular mass (ρ = 0.7934; P < .001). Conclusions and Relevance: This cohort of young adults born SGA had markedly reduced exercise capacity. These results support further research to clarify the causes of impaired exercise capacity and the potential association with increased cardiovascular mortality among adults born SGA.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Tolerância ao Exercício/fisiologia , Exercício Físico/fisiologia , Recém-Nascido Pequeno para a Idade Gestacional/fisiologia , Adulto , Doenças Cardiovasculares/epidemiologia , Feminino , Idade Gestacional , Humanos , Incidência , Masculino , Espanha/epidemiologia , Adulto Jovem
2.
Med Image Anal ; 17(3): 348-64, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23410512

RESUMO

This paper presents a new registration framework for quantifying myocardial motion and strain from the combination of multiple 3D ultrasound (US) sequences. The originality of our approach lies in the estimation of the transformation directly from the input multiple views rather than from a single view or a reconstructed compounded sequence. This allows us to exploit all spatiotemporal information available in the input views avoiding occlusions and image fusion errors that could lead to some inconsistencies in the motion quantification result. We propose a multiview diffeomorphic registration strategy that enforces smoothness and consistency in the spatiotemporal domain by modeling the 4D velocity field continuously in space and time. This 4D continuous representation considers 3D US sequences as a whole, therefore allowing to robustly cope with variations in heart rate resulting in different number of images acquired per cardiac cycle for different views. This contributes to the robustness gained by solving for a single transformation from all input sequences. The similarity metric takes into account the physics of US images and uses a weighting scheme to balance the contribution of the different views. It includes a comparison both between consecutive images and between a reference and each of the following images. The strain tensor is computed locally using the spatial derivatives of the reconstructed displacement fields. Registration and strain accuracy were evaluated on synthetic 3D US sequences with known ground truth. Experiments were also conducted on multiview 3D datasets of 8 volunteers and 1 patient treated by cardiac resynchronization therapy. Strain curves obtained from our multiview approach were compared to the single-view case, as well as with other multiview approaches. For healthy cases, the inclusion of several views improved the consistency of the strain curves and reduced the number of segments where a non-physiological strain pattern was observed. For the patient, the improvement (pacing ON vs. OFF) in synchrony of regional strain correlated with clinician blind assessment and could be seen more clearly when using the multiview approach.


Assuntos
Ecocardiografia Tridimensional/métodos , Técnicas de Imagem por Elasticidade/métodos , Coração/fisiopatologia , Interpretação de Imagem Assistida por Computador/métodos , Movimento , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Algoritmos , Módulo de Elasticidade , Humanos , Aumento da Imagem/métodos , Sensibilidade e Especificidade
3.
Med Image Anal ; 16(2): 427-50, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22137545

RESUMO

This paper presents a new registration algorithm, called Temporal Diffeomorphic Free Form Deformation (TDFFD), and its application to motion and strain quantification from a sequence of 3D ultrasound (US) images. The originality of our approach resides in enforcing time consistency by representing the 4D velocity field as the sum of continuous spatiotemporal B-Spline kernels. The spatiotemporal displacement field is then recovered through forward Eulerian integration of the non-stationary velocity field. The strain tensor is computed locally using the spatial derivatives of the reconstructed displacement field. The energy functional considered in this paper weighs two terms: the image similarity and a regularization term. The image similarity metric is the sum of squared differences between the intensities of each frame and a reference one. Any frame in the sequence can be chosen as reference. The regularization term is based on the incompressibility of myocardial tissue. TDFFD was compared to pairwise 3D FFD and 3D+t FFD, both on displacement and velocity fields, on a set of synthetic 3D US images with different noise levels. TDFFD showed increased robustness to noise compared to these two state-of-the-art algorithms. TDFFD also proved to be more resistant to a reduced temporal resolution when decimating this synthetic sequence. Finally, this synthetic dataset was used to determine optimal settings of the TDFFD algorithm. Subsequently, TDFFD was applied to a database of cardiac 3D US images of the left ventricle acquired from 9 healthy volunteers and 13 patients treated by Cardiac Resynchronization Therapy (CRT). On healthy cases, uniform strain patterns were observed over all myocardial segments, as physiologically expected. On all CRT patients, the improvement in synchrony of regional longitudinal strain correlated with CRT clinical outcome as quantified by the reduction of end-systolic left ventricular volume at follow-up (6 and 12months), showing the potential of the proposed algorithm for the assessment of CRT.


Assuntos
Ecocardiografia Tridimensional/métodos , Técnicas de Imagem por Elasticidade/métodos , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Movimento , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/fisiopatologia , Simulação por Computador , Módulo de Elasticidade , Humanos , Aumento da Imagem/métodos , Modelos Cardiovasculares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
4.
Med Image Anal ; 15(3): 316-28, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21315650

RESUMO

In this paper, we present a new method for the automatic comparison of myocardial motion patterns and the characterization of their degree of abnormality, based on a statistical atlas of motion built from a reference healthy population. Our main contribution is the computation of atlas-based indexes that quantify the abnormality in the motion of a given subject against a reference population, at every location in time and space. The critical computational cost inherent to the construction of an atlas is highly reduced by the definition of myocardial velocities under a small displacements hypothesis. The indexes we propose are of notable interest for the assessment of anomalies in cardiac mobility and synchronicity when applied, for instance, to candidate selection for cardiac resynchronization therapy (CRT). We built an atlas of normality using 2D ultrasound cardiac sequences from 21 healthy volunteers, to which we compared 14 CRT candidates with left ventricular dyssynchrony (LVDYS). We illustrate the potential of our approach in characterizing septal flash, a specific motion pattern related to LVDYS and recently introduced as a very good predictor of response to CRT.


Assuntos
Algoritmos , Ecocardiografia/métodos , Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Disfunção Ventricular Esquerda/diagnóstico por imagem , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Modelos Cardiovasculares , Modelos Estatísticos , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-20879292

RESUMO

This paper presents a new diffeomorphic temporal registration algorithm and its application to motion and strain quantification from a temporal sequence of 3D images. The displacement field is computed by forward eulerian integration of a non-stationary velocity field. The originality of our approach resides in enforcing time consistency by representing the velocity field as a sum of continuous spatiotemporal B-Spline kernels. The accuracy of the developed diffeomorphic technique was first compared to a simple pairwise strategy on synthetic US images with known ground truth motion and with several noise levels, being the proposed algorithm more robust to noise than the pairwise case. Our algorithm was then applied to a database of cardiac 3D+t Ultrasound (US) images of the left ventricle acquired from eight healthy volunteers and three Cardiac Resynchronization Therapy (CRT) patients. On healthy cases, the measured regional strain curves provided uniform strain patterns over all myocardial segments in accordance with clinical literature. On CRT patients, the obtained normalization of the strain pattern after CRT agreed with clinical outcome for the three cases.


Assuntos
Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/fisiopatologia , Ecocardiografia Tridimensional/métodos , Técnicas de Imagem por Elasticidade/métodos , Coração/fisiopatologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Algoritmos , Módulo de Elasticidade , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Radiother Oncol ; 85(2): 232-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17936388

RESUMO

PURPOSE: To improve treatment planning in radiotherapy for non-small cell lung cancer by including Respiratory Correlated-Computed Tomography (RC-CT) information in tumour delineation and dose planning. METHODS AND MATERIALS: Dense displacement fields were computed using a combination of rigid and non-rigid registrations between RC-CT phases. These registrations have been performed independently between each phase of the respiratory cycle and a reference phase for 13 patients. A manual delineation in the reference frame was propagated to every other phase according to the deformation fields recovered from the inter-phase registrations. Resulting delineations were compared to two manual delineations drawn by two physicians at each phase. On the other hand, dose distributions computed for every phase were deformed towards the reference phase. These distributions were then added on the reference phase to estimate the total dose received by each voxel through the whole respiratory cycle. RESULTS: The overlap between the deformed and the manual delineations was not significantly different than the overlap between the delineations made by the two physicians for 11 out of 13 patients thus proving that the method accuracy is comparable to inter-observer variability. Calculation of the effective dose distributions showed that these were conserved after deformation. CONCLUSION: We developed a method to use RC-CT information into the radiation treatment planning, including semi-automatic segmentation of lung tumours on each phase of the respiratory cycle and a total received dose per voxel estimation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Dosagem Radioterapêutica , Respiração , Tomografia Computadorizada por Raios X/métodos , Humanos , Variações Dependentes do Observador , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA