Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232196

RESUMO

While blood-based tests are readily available for various conditions, including cardiovascular diseases, type 2 diabetes, and common cancers, Alzheimer's disease (AD) and other neurodegenerative diseases lack an early blood-based screening test that can be used in primary care. Major efforts have been made towards the investigation of approaches that may lead to minimally invasive, cost-effective, and reliable tests capable of measuring brain pathological status. Here, we review past and current technologies developed to investigate biomarkers of AD, including novel blood-based approaches and the more established cerebrospinal fluid and neuroimaging biomarkers of disease. The utility of blood as a source of AD-related biomarkers in both clinical practice and interventional trials is discussed, supported by a comprehensive list of clinical trials for AD drugs and interventions that list biomarkers as primary or secondary endpoints. We highlight that identifying individuals in early preclinical AD using blood-based biomarkers will improve clinical trials and the optimization of therapeutic treatments as they become available. Lastly, we discuss challenges that remain in the field and address new approaches being developed, such as the examination of cargo packaged within extracellular vesicles of neuronal origin isolated from peripheral blood.

2.
Brain Behav Immun Health ; 39: 100805, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39022627

RESUMO

COVID-19 induces acute and persistent neurological symptoms in mild and severe cases. Proposed concomitant mechanisms include direct viral infection and strain, coagulopathy, hypoxia, and neuroinflammation. However, underlying molecular alterations associated with multiple neurological outcomes in both mild and severe cases are majorly unexplored. To illuminate possible mechanisms leading to COVID-19 neurological disease, we retrospectively investigated in detail a cohort of 35 COVID-19 mild and severe hospitalized patients presenting neurological alterations subject to clinically indicated cerebrospinal fluid (CSF) sampling. Clinical and neurological investigation, brain imaging, viral sequencing, and cerebrospinal CSF analyses were carried out. We found that COVID-19 patients presented heterogeneous neurological symptoms dissociated from lung burden. Nasal swab viral sequencing revealed a dominant strain at the time of the study, and we could not detect traces of SARS-CoV-2's spike protein in patients' CSF by multiple reaction monitoring analysis. Patients presented ubiquitous systemic hyper-inflammation and broad alterations in CSF proteomics related to inflammation, innate immunity, and hemostasis, irrespective of COVID-19 severity or neuroimaging alterations. Elevated CSF interleukin-6 (IL6) correlated with disease severity (sex-, age-, and comorbidity-adjusted mean Severe 24.5 pg/ml, 95% confidence interval (CI) 9.62-62.23 vs. Mild 3.91 pg/mL CI 1.5-10.3 patients, p = 0.019). CSF tumor necrosis factor-alpha (TNFα) and IL6 levels were higher in patients presenting pronounced neuroimaging alterations compared to those who did not (sex-, age-, and comorbidity-adjusted mean TNFα Pronounced 3.4, CI 2.4-4.4 vs. Non-Pronounced 2.0, CI 1.4-2.5, p = 0.022; IL6 Pronounced 33.11, CI 8.89-123.31 vs Non-Pronounced 6.22, CI 2.9-13.34, p = 0.046). Collectively, our findings put neuroinflammation as a possible driver of COVID-19 acute neurological disease in mild and severe cases.

3.
Mol Ther ; 31(2): 409-419, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369741

RESUMO

The accumulation of soluble oligomers of the amyloid-ß peptide (AßOs) in the brain has been implicated in synapse failure and memory impairment in Alzheimer's disease. Here, we initially show that treatment with NUsc1, a single-chain variable-fragment antibody (scFv) that selectively targets a subpopulation of AßOs and shows minimal reactivity to Aß monomers and fibrils, prevents the inhibition of long-term potentiation in hippocampal slices and memory impairment induced by AßOs in mice. As a therapeutic approach for intracerebral antibody delivery, we developed an adeno-associated virus vector to drive neuronal expression of NUsc1 (AAV-NUsc1) within the brain. Transduction by AAV-NUsc1 induced NUsc1 expression and secretion in adult human brain slices and inhibited AßO binding to neurons and AßO-induced loss of dendritic spines in primary rat hippocampal cultures. Treatment of mice with AAV-NUsc1 prevented memory impairment induced by AßOs and, remarkably, reversed memory deficits in aged APPswe/PS1ΔE9 Alzheimer's disease model mice. These results support the feasibility of immunotherapy using viral vector-mediated gene delivery of NUsc1 or other AßO-specific single-chain antibodies as a potential therapeutic approach in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Anticorpos de Cadeia Única , Camundongos , Ratos , Humanos , Animais , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/terapia
4.
Front Cell Neurosci ; 16: 953991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187295

RESUMO

Physical exercise stimulates neuroprotective pathways, has pro-cognitive actions, and alleviates memory impairment in Alzheimer's disease (AD). Irisin is an exercise-linked hormone produced by cleavage of fibronectin type III domain containing protein 5 (FNDC5) in skeletal muscle, brain and other tissues. Irisin was recently shown to mediate the brain benefits of exercise in AD mouse models. Here, we sought to obtain insight into the neuroprotective actions of irisin. We demonstrate that adenoviral-mediated expression of irisin promotes extracellular brain derived neurotrophic factor (BDNF) accumulation in hippocampal cultures. We further show that irisin stimulates transient activation of extracellular signal-regulated kinase 1/2 (ERK 1/2), and prevents amyloid-ß oligomer-induced oxidative stress in primary hippocampal neurons. Finally, analysis of RNA sequencing (RNAseq) datasets shows a trend of reduction of hippocampal FNDC5 mRNA with aging and tau pathology in humans. Results indicate that irisin activates protective pathways in hippocampal neurons and further support the notion that stimulation of irisin signaling in the brain may be beneficial in AD.

5.
J Pathol ; 254(3): 244-253, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33797777

RESUMO

Amyloid plaques and neurofibrillary tangles composed of hyperphosphorylated tau are important contributors to Alzheimer's disease (AD). Tau also impacts pancreatic beta cell function and glucose homeostasis. Amyloid deposits composed of islet amyloid polypeptide (IAPP) are a pathological feature of type 2 diabetes (T2D). The current study investigates the role of human tau (hTau) in combination with human IAPP (hIAPP) as a potential mechanism connecting AD and T2D. Transgenic mice expressing hTau and hIAPP in the absence of murine tau were generated to determine the impact of these pathological factors on glucose metabolism. Co-expression of hIAPP and hTau resulted in mice with increased hyperglycaemia, insulin resistance, and glucose intolerance. The hTau-hIAPP mice also exhibited reduced beta cell area, increased amyloid deposition, impaired insulin processing, and reduced insulin content in islets. Tau phosphorylation also increased after stimulation with high glucose. In addition, brain insulin content and signalling were reduced, and tau phosphorylation was increased in these animals. These data support a link between tau and IAPP amyloid, which seems to act co-ordinately to impair beta cell function and glucose homeostasis, and suggest that the combined pathological actions of these proteins may be a potential mechanism connecting AD and T2D. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Proteínas tau/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Intolerância à Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Resistência à Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Transgênicos
6.
Transl Psychiatry ; 11(1): 251, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911072

RESUMO

Alzheimer's disease (AD) is associated with memory impairment and altered peripheral metabolism. Mounting evidence indicates that abnormal signaling in a brain-periphery metabolic axis plays a role in AD pathophysiology. The activation of pro-inflammatory pathways in the brain, including the interleukin-6 (IL-6) pathway, comprises a potential point of convergence between memory dysfunction and metabolic alterations in AD that remains to be better explored. Using T2-weighted magnetic resonance imaging (MRI), we observed signs of probable inflammation in the hypothalamus and in the hippocampus of AD patients when compared to cognitively healthy control subjects. Pathological examination of post-mortem AD hypothalamus revealed the presence of hyperphosphorylated tau and tangle-like structures, as well as parenchymal and vascular amyloid deposits surrounded by astrocytes. T2 hyperintensities on MRI positively correlated with plasma IL-6, and both correlated inversely with cognitive performance and hypothalamic/hippocampal volumes in AD patients. Increased IL-6 and suppressor of cytokine signaling 3 (SOCS3) were observed in post-mortem AD brains. Moreover, activation of the IL-6 pathway was observed in the hypothalamus and hippocampus of AD mice. Neutralization of IL-6 and inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling in the brains of AD mouse models alleviated memory impairment and peripheral glucose intolerance, and normalized plasma IL-6 levels. Collectively, these results point to IL-6 as a link between cognitive impairment and peripheral metabolic alterations in AD. Targeting pro-inflammatory IL-6 signaling may be a strategy to alleviate memory impairment and metabolic alterations in the disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Interleucina-6 , Camundongos , Placa Amiloide
7.
Cell Rep ; 30(7): 2180-2194.e8, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075735

RESUMO

Obesity has been associated with cognitive decline, atrophy of brain regions related to learning and memory, and higher risk of developing dementia. However, the molecular mechanisms underlying these neurological alterations are still largely unknown. Here, we investigate the effects of palmitate, a saturated fatty acid present at high amounts in fat-rich diets, in the brain. Palmitate is increased in the cerebrospinal fluid (CSF) of overweight and obese patients with amnestic mild cognitive impairment. In mice, intracerebroventricular infusion of palmitate impairs synaptic plasticity and memory. Palmitate induces astroglial and microglial activation in the mouse hippocampus, and its deleterious impact is mediated by microglia-derived tumor necrosis factor alpha (TNF-α) signaling. Our results establish that obesity is associated with increases in CSF palmitate. By defining a pro-inflammatory mechanism by which abnormal levels of palmitate in the brain impair memory, the results further suggest that anti-inflammatory strategies may attenuate memory impairment in obesity.


Assuntos
Transtornos da Memória/etiologia , Obesidade/líquido cefalorraquidiano , Palmitatos/líquido cefalorraquidiano , Fator de Necrose Tumoral alfa/metabolismo , Animais , Humanos , Transtornos da Memória/patologia , Camundongos , Obesidade/patologia
8.
Stem Cell Res Ther ; 10(1): 332, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747944

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have been explored as promising tools for treatment of several neurological and neurodegenerative diseases. MSCs release abundant extracellular vesicles (EVs) containing a variety of biomolecules, including mRNAs, miRNAs, and proteins. We hypothesized that EVs derived from human Wharton's jelly would act as mediators of the communication between hMSCs and neurons and could protect hippocampal neurons from damage induced by Alzheimer's disease-linked amyloid beta oligomers (AßOs). METHODS: We isolated and characterized EVs released by human Wharton's jelly mesenchymal stem cells (hMSC-EVs). The neuroprotective action of hMSC-EVs was investigated in primary hippocampal cultures exposed to AßOs. RESULTS: hMSC-EVs were internalized by hippocampal cells in culture, and this was enhanced in the presence of AßOs in the medium. hMSC-EVs protected hippocampal neurons from oxidative stress and synapse damage induced by AßOs. Neuroprotection by hMSC-EVs was mediated by catalase and was abolished in the presence of the catalase inhibitor, aminotriazole. CONCLUSIONS: hMSC-EVs protected hippocampal neurons from damage induced by AßOs, and this was related to the transfer of enzymatically active catalase contained in EVs. Results suggest that hMSC-EVs should be further explored as a cell-free therapeutic approach to prevent neuronal damage in Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , Neurônios/patologia , Neuroproteção , Estresse Oxidativo , Sinapses/patologia , Geleia de Wharton/citologia , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Exossomos/metabolismo , Exossomos/ultraestrutura , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Hipocampo/patologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Multimerização Proteica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sinapses/efeitos dos fármacos
9.
Nat Commun ; 10(1): 3890, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488835

RESUMO

Neurological complications affecting the central nervous system have been reported in adult patients infected by Zika virus (ZIKV) but the underlying mechanisms remain unknown. Here, we report that ZIKV replicates in human and mouse adult brain tissue, targeting mature neurons. ZIKV preferentially targets memory-related brain regions, inhibits hippocampal long-term potentiation and induces memory impairment in adult mice. TNF-α upregulation, microgliosis and upregulation of complement system proteins, C1q and C3, are induced by ZIKV infection. Microglia are found to engulf hippocampal presynaptic terminals during acute infection. Neutralization of TNF-α signaling, blockage of microglial activation or of C1q/C3 prevent synapse and memory impairment in ZIKV-infected mice. Results suggest that ZIKV induces synapse and memory dysfunction via aberrant activation of TNF-α, microglia and complement. Our findings establish a mechanism by which ZIKV affects the adult brain, and point to the need of evaluating cognitive deficits as a potential comorbidity in ZIKV-infected adults.


Assuntos
Encéfalo/virologia , Sinapses/virologia , Replicação Viral , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Inflamação , Aprendizagem , Masculino , Memória , Transtornos da Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Neurônios/virologia , Terminações Pré-Sinápticas/metabolismo , Receptores Tipo I de Interleucina-1/genética , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Front Psychiatry ; 10: 57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837902

RESUMO

Neuropsychiatric disorders and type 2 diabetes (T2D) are major public health concerns proposed to be intimately connected. T2D is associated with increased risk of dementia, neuropsychiatric and mood disorders. Evidences of the involvement of insulin signaling on brain mechanisms related to depression indicate that insulin resistance, a hallmark of type 2 diabetes, could develop in the brains of depressive patients. In this article, we briefly review possible molecular mechanisms associating defective brain insulin signaling with reward system, neurogenesis, synaptic plasticity and hypothalamic-pituitary-adrenal (HPA) stress axis in depression. We further discuss the involvement of tumor necrosis factor α (TNFα) promoting defective insulin signaling and depressive-like behavior in rodent models. Finally, due to the high resistant rate of anti-depressants, novel insights into the link between insulin resistance and depression may advance the development of alternative treatments for this disease.

11.
Sci Transl Med ; 10(444)2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875203

RESUMO

Although congenital Zika virus (ZIKV) exposure has been associated with microcephaly and other neurodevelopmental disorders, long-term consequences of perinatal infection are largely unknown. We evaluated short- and long-term neuropathological and behavioral consequences of neonatal ZIKV infection in mice. ZIKV showed brain tropism, causing postnatal-onset microcephaly and several behavioral deficits in adulthood. During the acute phase of infection, mice developed frequent seizures, which were reduced by tumor necrosis factor-α (TNF-α) inhibition. During adulthood, ZIKV replication persisted in neonatally infected mice, and the animals showed increased susceptibility to chemically induced seizures, neurodegeneration, and brain calcifications. Altogether, the results show that neonatal ZIKV infection has long-term neuropathological and behavioral complications in mice and suggest that early inhibition of TNF-α-mediated neuroinflammation might be an effective therapeutic strategy to prevent the development of chronic neurological abnormalities.


Assuntos
Encéfalo/patologia , Encéfalo/virologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Doença Aguda , Animais , Animais Recém-Nascidos , Atrofia , Encéfalo/fisiopatologia , Doença Crônica , Cognição , Inflamação/patologia , Masculino , Camundongos , Atividade Motora , Testes de Neutralização , Estresse Oxidativo , Convulsões/patologia , Convulsões/fisiopatologia , Convulsões/virologia , Fator de Necrose Tumoral alfa/metabolismo , Replicação Viral , Redução de Peso , Infecção por Zika virus/patologia , Infecção por Zika virus/fisiopatologia
12.
Neuropharmacology ; 136(Pt B): 172-181, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29169962

RESUMO

Alzheimer's disease (AD) is the most common type of dementia. Recent studies suggest that metabolic disturbances, particularly type 2 diabetes (T2D) increase the risk of cognitive decline and AD. AD is also a risk factor for T2D, and a growing body of evidence indicates that these diseases are connected both at clinical and molecular levels. In T2D, peripheral insulin resistance, hyperglycemia and eventually insulin deficiency develops, leading to an overall decline in tissue health. More recently, brain insulin resistance has been shown to be a key feature of AD that is linked to neuronal dysfunction and cognitive impairment. Furthermore, both AD and T2D are amyloidogenic diseases, with abnormal aggregation of amyloid-ß peptide (Aß) and islet amyloid polypeptide (IAPP) respectively contributing to cellular death and disease pathogenesis. Emerging data suggests that Aß may have peripheral effects including its co-deposition in the pancreas. In this review, we discuss how peripheral effects of Aß and metabolic disturbances may impact AD pathogenesis. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'


Assuntos
Doença de Alzheimer/metabolismo , Glucose/metabolismo , Homeostase/fisiologia , Animais , Humanos
13.
Mol Neurobiol ; 55(1): 435-444, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27966074

RESUMO

Sepsis survivors frequently develop late cognitive impairment. Because little is known on the mechanisms of post-septic memory deficits, there are no current effective approaches to prevent or treat such symptoms. Here, we subjected mice to severe sepsis induced by cecal ligation and puncture (CLP) and evaluated the sepsis-surviving animals in the open field, novel object recognition (NOR), and step-down inhibitory avoidance (IA) task at different times after surgery. Post-septic mice (30 days post-surgery) failed in the NOR and IA tests but exhibited normal performance when re-evaluated 45 days after surgery. Cognitive impairment in post-septic mice was accompanied by reduced hippocampal levels of proteins involved in synaptic plasticity, including synaptophysin, cAMP response element-binding protein (CREB), CREB phosphorylated at serine residue 133 (CREBpSer133), and GluA1 phosphorylated at serine residue 845 (GluA1pSer845). Expression of tumor necrosis factor α (TNF-α) was increased and brain insulin signaling was disrupted, as indicated by increased hippocampal IRS-1 phosphorylation at serine 636 (IRS-1pSer636) and decreased phosphorylation of IRS-1 at tyrosine 465 (IRS-1pTyr465), in the hippocampus 30 days after CLP. Phosphorylation of Akt at serine 473 (AktpSer473) and of GSK3 at serine 9 (GSK3ßpSer9) were also decreased in hippocampi of post-septic animals, further indicating that brain insulin signaling is disrupted by sepsis. We then treated post-septic mice with liraglutide, a GLP-1 receptor agonist with insulinotropic activity, or TDZD-8, a GSK3ß inhibitor, which rescued NOR memory. In conclusion, these results establish that hippocampal inflammation and disrupted insulin signaling are induced by sepsis and are linked to late memory impairment in sepsis survivors.


Assuntos
Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Insulina/metabolismo , Sepse/metabolismo , Transdução de Sinais/fisiologia , Animais , Encéfalo/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Comportamento Exploratório/fisiologia , Masculino , Camundongos , Sepse/complicações , Sepse/patologia
14.
J Biol Chem ; 293(6): 1957-1975, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29284679

RESUMO

Alzheimer's disease (AD) is a disabling and highly prevalent neurodegenerative condition, for which there are no effective therapies. Soluble oligomers of the amyloid-ß peptide (AßOs) are thought to be proximal neurotoxins involved in early neuronal oxidative stress and synapse damage, ultimately leading to neurodegeneration and memory impairment in AD. The aim of the current study was to evaluate the neuroprotective potential of mesenchymal stem cells (MSCs) against the deleterious impact of AßOs on hippocampal neurons. To this end, we established transwell cocultures of rat hippocampal neurons and MSCs. We show that MSCs and MSC-derived extracellular vesicles protect neurons against AßO-induced oxidative stress and synapse damage, revealed by loss of pre- and postsynaptic markers. Protection by MSCs entails three complementary mechanisms: 1) internalization and degradation of AßOs; 2) release of extracellular vesicles containing active catalase; and 3) selective secretion of interleukin-6, interleukin-10, and vascular endothelial growth factor to the medium. Results support the notion that MSCs may represent a promising alternative for cell-based therapies in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Vesículas Extracelulares/metabolismo , Hipocampo/citologia , Células-Tronco Mesenquimais/citologia , Neurônios/metabolismo , Estresse Oxidativo , Sinapses/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Animais , Células Cultivadas , Técnicas de Cocultura , Vesículas Extracelulares/genética , Hipocampo/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Behav Brain Res ; 333: 150-160, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28668282

RESUMO

Parkinson's disease (PD) is characterized by motor dysfunction, which is preceded by a number of non-motor symptoms including olfactory deficits. Aggregation of α-synuclein (α-syn) gives rise to Lewy bodies in dopaminergic neurons and is thought to play a central role in PD pathology. However, whether amyloid fibrils or soluble oligomers of α-syn are the main neurotoxic species in PD remains controversial. Here, we performed a single intracerebroventricular (i.c.v.) infusion of α-syn oligomers (α-SYOs) in mice and evaluated motor and non-motor symptoms. Familiar bedding and vanillin essence discrimination tasks showed that α-SYOs impaired olfactory performance of mice, and decreased TH and dopamine levels in the olfactory bulb early after infusion. The olfactory deficit persisted until 45days post-infusion (dpi). α- SYO-infused mice behaved normally in the object recognition and forced swim tests, but showed increased anxiety-like behavior in the open field and elevated plus maze tests 20 dpi. Finally, administration of α-SYOs induced late motor impairment in the pole test and rotarod paradigms, along with reduced TH and dopamine content in the caudate putamen, 45 dpi. Reduced number of TH-positive cells was also seen in the substantia nigra of α-SYO-injected mice compared to control. In conclusion, i.c.v. infusion of α-SYOs recapitulated some of PD-associated non-motor symptoms, such as increased anxiety and olfactory dysfunction, but failed to recapitulate memory impairment and depressive-like behavior typical of the disease. Moreover, α-SYOs i.c.v. administration induced motor deficits and loss of TH and dopamine levels, key features of PD. Results point to α-syn oligomers as the proximal neurotoxins responsible for early non-motor and motor deficits in PD and suggest that the i.c.v. infusion model characterized here may comprise a useful tool for identification of PD novel therapeutic targets and drug screening.


Assuntos
Sintomas Comportamentais/etiologia , Encéfalo/efeitos dos fármacos , Transtornos do Olfato/etiologia , Doença de Parkinson/complicações , Doença de Parkinson/etiologia , alfa-Sinucleína/toxicidade , Animais , Encéfalo/metabolismo , Células Cultivadas , Discriminação Psicológica/efeitos dos fármacos , Modelos Animais de Doenças , Embrião de Mamíferos , Humanos , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Mesencéfalo/citologia , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/toxicidade , Reconhecimento Psicológico/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
16.
J Biol Chem ; 292(18): 7395-7406, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28302722

RESUMO

AMP-activated kinase (AMPK) is a key player in energy sensing and metabolic reprogramming under cellular energy restriction. Several studies have linked impaired AMPK function to peripheral metabolic diseases such as diabetes. However, the impact of neurological disorders, such as Alzheimer disease (AD), on AMPK function and downstream effects of altered AMPK activity on neuronal metabolism have been investigated only recently. Here, we report the impact of Aß oligomers (AßOs), synaptotoxins that accumulate in AD brains, on neuronal AMPK activity. Short-term exposure of cultured rat hippocampal neurons or ex vivo human cortical slices to AßOs transiently decreased intracellular ATP levels and AMPK activity, as evaluated by its phosphorylation at threonine residue 172 (AMPK-Thr(P)172). The AßO-dependent reduction in AMPK-Thr(P)172 levels was mediated by glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype and resulted in removal of glucose transporters (GLUTs) from the surfaces of dendritic processes in hippocampal neurons. Importantly, insulin prevented the AßO-induced inhibition of AMPK. Our results establish a novel toxic impact of AßOs on neuronal metabolism and suggest that AßO-induced, NMDA receptor-mediated AMPK inhibition may play a key role in early brain metabolic defects in AD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hipocampo/patologia , Humanos , Insulina/farmacologia , Neurônios/patologia , Fragmentos de Peptídeos/genética , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
17.
J Neurosci ; 36(48): 12106-12116, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27903721

RESUMO

Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aß oligomers (AßOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AßO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AßOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AßOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AßOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. SIGNIFICANCE STATEMENT: Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-ß oligomers (AßOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AßO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function.


Assuntos
Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/imunologia , Encéfalo/imunologia , Depressão/imunologia , Imunidade Inata/imunologia , Receptor Cross-Talk/imunologia , Serotonina/imunologia , Animais , Comportamento Animal , Depressão/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Microglia/imunologia , Fator de Necrose Tumoral alfa/imunologia
18.
EMBO Mol Med ; 7(2): 190-210, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25617315

RESUMO

Alzheimer's disease (AD) is associated with peripheral metabolic disorders. Clinical/epidemiological data indicate increased risk of diabetes in AD patients. Here, we show that intracerebroventricular infusion of AD-associated Aß oligomers (AßOs) in mice triggered peripheral glucose intolerance, a phenomenon further verified in two transgenic mouse models of AD. Systemically injected AßOs failed to induce glucose intolerance, suggesting AßOs target brain regions involved in peripheral metabolic control. Accordingly, we show that AßOs affected hypothalamic neurons in culture, inducing eukaryotic translation initiation factor 2α phosphorylation (eIF2α-P). AßOs further induced eIF2α-P and activated pro-inflammatory IKKß/NF-κB signaling in the hypothalamus of mice and macaques. AßOs failed to trigger peripheral glucose intolerance in tumor necrosis factor-α (TNF-α) receptor 1 knockout mice. Pharmacological inhibition of brain inflammation and endoplasmic reticulum stress prevented glucose intolerance in mice, indicating that AßOs act via a central route to affect peripheral glucose homeostasis. While the hypothalamus has been largely ignored in the AD field, our findings indicate that AßOs affect this brain region and reveal novel shared molecular mechanisms between hypothalamic dysfunction in metabolic disorders and AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipotálamo/metabolismo , Oligonucleotídeos/metabolismo , Nervos Periféricos/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Feminino , Glucose/metabolismo , Humanos , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Neurônios/metabolismo , Oligonucleotídeos/genética , Ratos , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
Cell Metab ; 18(6): 831-43, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24315369

RESUMO

Alzheimer's disease (AD) and type 2 diabetes appear to share similar pathogenic mechanisms. dsRNA-dependent protein kinase (PKR) underlies peripheral insulin resistance in metabolic disorders. PKR phosphorylates eukaryotic translation initiation factor 2α (eIF2α-P), and AD brains exhibit elevated phospho-PKR and eIF2α-P levels. Whether and how PKR and eIF2α-P participate in defective brain insulin signaling and cognitive impairment in AD are unknown. We report that ß-amyloid oligomers, AD-associated toxins, activate PKR in a tumor necrosis factor α (TNF-α)-dependent manner, resulting in eIF2α-P, neuronal insulin receptor substrate (IRS-1) inhibition, synapse loss, and memory impairment. Brain phospho-PKR and eIF2α-P were elevated in AD animal models, including monkeys given intracerebroventricular oligomer infusions. Oligomers failed to trigger eIF2α-P and cognitive impairment in PKR(-/-) and TNFR1(-/-) mice. Bolstering insulin signaling rescued phospho-PKR and eIF2α-P. Results reveal pathogenic mechanisms shared by AD and diabetes and establish that proinflammatory signaling mediates oligomer-induced IRS-1 inhibition and PKR-dependent synapse and memory loss.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Encéfalo/efeitos dos fármacos , Proteínas Substratos do Receptor de Insulina/metabolismo , Polímeros/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , eIF-2 Quinase/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Haplorrinos/metabolismo , Hipoglicemiantes/farmacologia , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Polímeros/química , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , eIF-2 Quinase/deficiência , eIF-2 Quinase/genética
20.
J Clin Invest ; 122(4): 1339-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22476196

RESUMO

Defective brain insulin signaling has been suggested to contribute to the cognitive deficits in patients with Alzheimer's disease (AD). Although a connection between AD and diabetes has been suggested, a major unknown is the mechanism(s) by which insulin resistance in the brain arises in individuals with AD. Here, we show that serine phosphorylation of IRS-1 (IRS-1pSer) is common to both diseases. Brain tissue from humans with AD had elevated levels of IRS-1pSer and activated JNK, analogous to what occurs in peripheral tissue in patients with diabetes. We found that amyloid-ß peptide (Aß) oligomers, synaptotoxins that accumulate in the brains of AD patients, activated the JNK/TNF-α pathway, induced IRS-1 phosphorylation at multiple serine residues, and inhibited physiological IRS-1pTyr in mature cultured hippocampal neurons. Impaired IRS-1 signaling was also present in the hippocampi of Tg mice with a brain condition that models AD. Importantly, intracerebroventricular injection of Aß oligomers triggered hippocampal IRS-1pSer and JNK activation in cynomolgus monkeys. The oligomer-induced neuronal pathologies observed in vitro, including impaired axonal transport, were prevented by exposure to exendin-4 (exenatide), an anti-diabetes agent. In Tg mice, exendin-4 decreased levels of hippocampal IRS-1pSer and activated JNK and improved behavioral measures of cognition. By establishing molecular links between the dysregulated insulin signaling in AD and diabetes, our results open avenues for the investigation of new therapeutics in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Hipocampo/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Insulina/fisiologia , Peptídeos/uso terapêutico , Peçonhas/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/psicologia , Animais , Anticorpos Monoclonais/farmacologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Exenatida , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Hipoglicemiantes/farmacologia , Infliximab , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macaca fascicularis , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/farmacologia , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos , Peçonhas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA