Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(3): e16491, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36704923

RESUMO

Dysfunction of the endoplasmic reticulum (ER) in insulin-producing beta cells results in cell loss and diabetes mellitus. Here we report on five individuals from three different consanguineous families with infancy-onset diabetes mellitus and severe neurodevelopmental delay caused by a homozygous p.(Arg371Ser) mutation in FICD. The FICD gene encodes a bifunctional Fic domain-containing enzyme that regulates the ER Hsp70 chaperone, BiP, via catalysis of two antagonistic reactions: inhibitory AMPylation and stimulatory deAMPylation of BiP. Arg371 is a conserved residue in the Fic domain active site. The FICDR371S mutation partially compromises BiP AMPylation in vitro but eliminates all detectable deAMPylation activity. Overexpression of FICDR371S or knock-in of the mutation at the FICD locus of stressed CHO cells results in inappropriately elevated levels of AMPylated BiP and compromised secretion. These findings, guided by human genetics, highlight the destructive consequences of de-regulated BiP AMPylation and raise the prospect of tuning FICD's antagonistic activities towards therapeutic ends.


Assuntos
Diabetes Mellitus , Chaperona BiP do Retículo Endoplasmático , Animais , Cricetinae , Humanos , Lactente , Processamento de Proteína Pós-Traducional , Cricetulus , Monofosfato de Adenosina
2.
Clin Epigenetics ; 14(1): 143, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36345041

RESUMO

BACKGROUND: Imprinting disorders, which affect growth, development, metabolism and neoplasia risk, are caused by genetic or epigenetic changes to genes that are expressed from only one parental allele. Disease may result from changes in coding sequences, copy number changes, uniparental disomy or imprinting defects. Some imprinting disorders are clinically heterogeneous, some are associated with more than one imprinted locus, and some patients have alterations affecting multiple loci. Most imprinting disorders are diagnosed by stepwise analysis of gene dosage and methylation of single loci, but some laboratories assay a panel of loci associated with different imprinting disorders. We looked into the experience of several laboratories using single-locus and/or multi-locus diagnostic testing to explore how different testing strategies affect diagnostic outcomes and whether multi-locus testing has the potential to increase the diagnostic efficiency or reveal unforeseen diagnoses. RESULTS: We collected data from 11 laboratories in seven countries, involving 16,364 individuals and eight imprinting disorders. Among the 4721 individuals tested for the growth restriction disorder Silver-Russell syndrome, 731 had changes on chromosomes 7 and 11 classically associated with the disorder, but 115 had unexpected diagnoses that involved atypical molecular changes, imprinted loci on chromosomes other than 7 or 11 or multi-locus imprinting disorder. In a similar way, the molecular changes detected in Beckwith-Wiedemann syndrome and other imprinting disorders depended on the testing strategies employed by the different laboratories. CONCLUSIONS: Based on our findings, we discuss how multi-locus testing might optimise diagnosis for patients with classical and less familiar clinical imprinting disorders. Additionally, our compiled data reflect the daily life experiences of diagnostic laboratories, with a lower diagnostic yield than in clinically well-characterised cohorts, and illustrate the need for systematising clinical and molecular data.


Assuntos
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Humanos , Impressão Genômica , Metilação de DNA , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Transtornos do Crescimento/genética , Técnicas e Procedimentos Diagnósticos
3.
Nat Genet ; 54(11): 1615-1620, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36333503

RESUMO

Gene expression is tightly regulated, with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function1. This silencing is largely controlled by non-coding elements, and their disruption might cause human disease2. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1). HK1 is widely expressed across all tissues except in the liver and pancreatic beta cells and is thus termed a 'disallowed gene' in these specific tissues. We demonstrated that the variants result in a loss of repression of HK1 in pancreatic beta cells, thereby causing insulin secretion and congenital hyperinsulinism. Using epigenomic data accessed from public repositories, we demonstrated that these variants reside within a regulatory region that we determine to be critical for cell-specific silencing. Importantly, this has revealed a disease mechanism for non-coding variants that cause inappropriate expression of a disallowed gene.


Assuntos
Hiperinsulinismo Congênito , Células Secretoras de Insulina , Humanos , Hexoquinase/genética , Hexoquinase/metabolismo , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética
4.
Front Endocrinol (Lausanne) ; 12: 673755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093443

RESUMO

Background: Mutations in GLIS3 cause a rare syndrome characterized by neonatal diabetes mellitus (NDM), congenital hypothyroidism, congenital glaucoma and cystic kidneys. To date, 14 mutations in GLIS3 have been reported, inherited in an autosomal recessive manner. GLIS3 is a key transcription factor involved in ß-cell development, insulin expression, and development of the thyroid, eyes, liver and kidneys. Cases: We describe non-identical twins born to consanguineous parents presenting with NDM, congenital hypothyroidism, congenital glaucoma, hepatic cholestasis, cystic kidney and delayed psychomotor development. Sequence analysis of GLIS3 identified a novel homozygous nonsense mutation, c.2392C>T, p.Gln798Ter (p.Q798*), which results in an early stop codon. The diabetes was treated with a continuous subcutaneous insulin infusion pump and continuous glucose monitoring. Fluctuating blood glucose and intermittent hypoglycemia were observed on follow-up. Conclusions: This report highlights the importance of early molecular diagnosis for appropriate management of NDM. We describe a novel nonsense mutation of GLIS3 causing NDM, extend the phenotype, and discuss the challenges in clinical management. Our findings provide new areas for further investigation into the roles of GLIS3 in the pathophysiology of diabetes mellitus.


Assuntos
Biomarcadores/sangue , Hipotireoidismo Congênito/patologia , Proteínas de Ligação a DNA/genética , Diabetes Mellitus/patologia , Doenças do Recém-Nascido/patologia , Mutação , Proteínas Repressoras/genética , Transativadores/genética , Glicemia/análise , Pré-Escolar , Hipotireoidismo Congênito/etiologia , Hipotireoidismo Congênito/metabolismo , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Doenças do Recém-Nascido/etiologia , Doenças do Recém-Nascido/metabolismo , Masculino , Fenótipo , Prognóstico
5.
Front Endocrinol (Lausanne) ; 12: 665336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935973

RESUMO

Background: Neonatal diabetes with congenital hypothyroidism (NDH) syndrome is a rare condition caused by homozygous or compound heterozygous mutations in the GLI-similar 3 coding gene GLIS3. Almost 20 patients have been reported to date, with significant phenotypic variability. Case presentation: We describe a boy with a homozygous deletion (exons 5-9) in the GLIS3 gene, who presents novel clinical aspects not reported previously. In addition to neonatal diabetes, congenital hypothyroidism and other known multi-organ manifestations such as cholestasis and renal cysts, he suffered from hyporegenerative anemia during the first four months of life and presents megalocornea in the absence of elevated intraocular pressure. Compensation of partial exocrine pancreatic insufficiency and deficiencies in antioxidative vitamins seemed to have exerted marked beneficial impact on several disease symptoms including cholestasis and TSH resistance, although a causal relation is difficult to prove. Considering reports on persistent fetal hemoglobin detected in a few children with GLIS3 mutations, the transient anemia seen in our patient may represent a further symptom associated with either the GLIS3 defect itself or, secondarily, micronutrient deficiency related to exocrine pancreatic deficiency or cholestasis. Conclusions: Our report expands the phenotypic spectrum of patients with GLIS3 mutations and adds important information on the clinical course, highlighting the possible beneficial effects of pancreatic enzyme and antioxidative vitamin substitutions on characteristic NDH syndrome manifestations such as TSH resistance and cholestasis. We recommend to carefully screen infants with GLIS3 mutations for subtle biochemical signs of partial exocrine pancreatic deficiency or to discuss exploratory administration of pancreatic enzymes and antioxidative vitamins, even in case of good weight gain and fecal elastase concentrations in the low-to-normal range.


Assuntos
Hipotireoidismo Congênito/patologia , Proteínas de Ligação a DNA/genética , Diabetes Mellitus/patologia , Mutação , Fenótipo , Proteínas Repressoras/genética , Transativadores/genética , Hipotireoidismo Congênito/genética , Diabetes Mellitus/genética , Humanos , Lactente , Masculino , Prognóstico
6.
Hum Mutat ; 41(5): 884-905, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32027066

RESUMO

The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the ß-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.


Assuntos
Hiperinsulinismo Congênito/genética , Diabetes Mellitus/genética , Células Secretoras de Insulina/metabolismo , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Sulfonilureias/genética , Hiperinsulinismo Congênito/diagnóstico , Diabetes Mellitus/diagnóstico , Mutação com Ganho de Função , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Recém-Nascido , Mutação com Perda de Função
7.
Hum Mol Genet ; 28(21): 3543-3551, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31423530

RESUMO

We report the case of a consanguineous couple who lost four pregnancies associated with skeletal dysplasia. Radiological examination of one fetus was inconclusive. Parental exome sequencing showed that both parents were heterozygous for a novel missense variant, p.(Pro133Leu), in the SLC35D1 gene encoding a nucleotide sugar transporter. The affected fetus was homozygous for the variant. The radiological features were reviewed, and being similar, but atypical, the phenotype was classified as a 'Schneckenbecken-like dysplasia.' The effect of the missense change was assessed using protein modelling techniques and indicated alterations in the mouth of the solute channel. A detailed biochemical investigation of SLC35D1 transport function and that of the missense variant p.(Pro133Leu) revealed that SLC35D1 acts as a general UDP-sugar transporter and that the p.(Pro133Leu) mutation resulted in a significant decrease in transport activity. The reduced transport activity observed for p.(Pro133Leu) was contrasted with in vitro activity for SLC35D1 p.(Thr65Pro), the loss-of-function mutation was associated with Schneckenbecken dysplasia. The functional classification of SLC35D1 as a general nucleotide sugar transporter of the endoplasmic reticulum suggests an expanded role for this transporter beyond chondroitin sulfate biosynthesis to a variety of important glycosylation reactions occurring in the endoplasmic reticulum.


Assuntos
Doenças Fetais/genética , Proteínas de Transporte de Monossacarídeos/genética , Osteocondrodisplasias/genética , Alelos , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Doenças Fetais/metabolismo , Doenças Fetais/patologia , Heterozigoto , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação de Sentido Incorreto , Osteocondrodisplasias/embriologia , Osteocondrodisplasias/metabolismo
8.
Clin Case Rep ; 7(6): 1133-1138, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31183082

RESUMO

Wolcott-Rallison syndrome is a rare genetic syndrome of neonatal diabetes, liver failure, and growth retardation. We present a case with a EIF2AK3 p.(Arg902Ter) mutation, additionally complicated by hypothyroidism, impaired renal function, and exocrine pancreas insufficiency, focusing on clinical management. For its optimization, thorough care of multiple organ systems is needed.

9.
J Pediatr Endocrinol Metab ; 32(6): 607-613, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31141482

RESUMO

Background Wolcott-Rallison syndrome is a rare autosomal recessive disorder characterized by neonatal/early-onset non-autoimmune insulin-dependent diabetes, multiple epiphyseal dysphasia and growth retardation. It is caused by mutations in the gene encoding eukaryotic translation initiation factor 2α kinase 3 (EIF2AK3). We aimed to study the clinical characteristics and frequency of the disease in the Iranian population. Methods We recruited 42 patients who referred to the endocrine and metabolism clinic at Mashhad Imam Reza Hospital with neonatal diabetes. Molecular screening of KCNJ11, INS, ABCC8 and EIF2AK3 was performed at the Exeter Molecular Genetics Laboratory, UK. We calculated the frequency of the disease in 124 patients referred from Iran to the Exeter Molecular Genetics Laboratory for genetic screening and compared it to other countries worldwide. Results We identified seven patients as having Wolcott-Rallison syndrome. Genetic testing confirmed the clinical diagnosis and indicated five novel mutations. Only two patients developed clinical features of the syndrome by 6 months of age. Of all 124 cases of Iranian neonatal diabetes referred to the Exeter Molecular Genetics Laboratory for genetic screening, 28 patients (22.58%) had a recessive mutation in EIF2AK3. Conclusions The results of this study raises awareness of the condition and provides further accurate data on the genetic and clinical presentation of Wolcott-Rallison syndrome in the Iranian population. Our study highlights the importance of genetic testing in patients from consanguineous families with diabetes diagnosed within the first 6 months of life.


Assuntos
Biomarcadores/análise , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus/etiologia , Epífises/anormalidades , Doenças do Recém-Nascido/etiologia , Osteocondrodisplasias/complicações , eIF-2 Quinase/genética , Criança , Pré-Escolar , Consanguinidade , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Feminino , Humanos , Recém-Nascido , Doenças do Recém-Nascido/diagnóstico , Doenças do Recém-Nascido/epidemiologia , Irã (Geográfico)/epidemiologia , Masculino , Mutação , Prognóstico
10.
J Clin Res Pediatr Endocrinol ; 9(3): 260-264, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28663158

RESUMO

The pancreatic ATP-sensitive K+ (K-ATP) channel is a key regulator of insulin secretion. Gain-of-function mutations in the genes encoding the Kir6.2 (KCNJ11) and SUR1 (ABCC8) subunits of the channel cause neonatal diabetes, whilst loss-of-function mutations in these genes result in congenital hyperinsulinism. We report two patients with neonatal diabetes in whom we unexpectedly identified recessively inherited loss-of-function mutations. The aim of this study was to investigate how a homozygous nonsense mutation in ABCC8 could result in neonatal diabetes. The ABCC8 p.Glu747* was identified in two unrelated Vietnamese patients. This mutation is located within the in-frame exon 17 and RNA studies confirmed (a) the absence of full length SUR1 mRNA and (b) the presence of the alternatively spliced transcript lacking exon 17. Successful transfer of both patients to sulphonylurea treatment suggests that the altered transcript expression enhances the sensitivity of the K-ATP channel to Mg-ADP/ATP. This is the first report of an ABCC8 nonsense mutation causing a gain-of-channel function and these findings extend the spectrum of K-ATP channel mutations observed in patients with neonatal diabetes.


Assuntos
Hiperinsulinismo Congênito/genética , Receptores de Sulfonilureias/genética , Códon sem Sentido , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido/genética , Masculino
11.
Diabetes ; 66(8): 2316-2322, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28473463

RESUMO

Young-onset autoimmune diabetes associated with additional autoimmunity usually reflects a polygenic predisposition, but rare cases result from monogenic autoimmunity. Diagnosing monogenic autoimmunity is crucial for patients' prognosis and clinical management. We sought to identify novel genetic causes of autoimmunity presenting with neonatal diabetes (NDM) (diagnosis <6 months). We performed exome sequencing in a patient with NDM and autoimmune lymphoproliferative syndrome and his unrelated, unaffected parents and identified compound heterozygous null mutations in LRBA Biallelic LRBA mutations cause common variable immunodeficiency-8; however, NDM has not been confirmed in this disorder. We sequenced LRBA in 169 additional patients with diabetes diagnosed <1 year without mutations in the 24 known NDM genes. We identified recessive null mutations in 8 additional probands, of which, 3 had NDM (<6 months). Diabetes was the presenting feature in 6 of 9 probands. Six of 17 (35%) patients born to consanguineous parents and with additional early-onset autoimmunity had recessive LRBA mutations. LRBA testing should be considered in patients with diabetes diagnosed <12 months, particularly if they have additional autoimmunity or are born to consanguineous parents. A genetic diagnosis is important as it can enable personalized therapy with abatacept, a CTLA-4 mimetic, and inform genetic counseling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Autoimunidade/genética , Diabetes Mellitus Tipo 1/genética , Genes Recessivos/genética , Mutação , Pré-Escolar , Consanguinidade , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem
12.
Am J Med Genet A ; 170(7): 1918-23, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27148679

RESUMO

Neonatal diabetes and hypothyroidism (NDH) syndrome was first described in 2003 in a consanguineous Saudi Arabian family where two out of four siblings were reported to have presented with proportionate IUGR, neonatal non-autoimmune diabetes mellitus, severe congenital hypothyroidism, cholestasis, congenital glaucoma, and polycystic kidneys. Liver disease progressed to hepatic fibrosis. The renal disease was characterized by enlarged kidneys and multiple small cysts with deficient cortico-medullary junction differentiation and normal kidney function. There was minor facial dysmorphism (depressed nasal bridge, large anterior fontanelle, long philtrum) reported but no facial photographs were published. Mutations in the transcription factor GLI-similar 3 (GLIS3) gene in the original family and two other families were subsequently reported in 2006. All affected individuals had neonatal diabetes, congenital hypothyroidism but glaucoma and liver and kidney involvement were less consistent features. Detailed descriptions of the facial dysmorphism have not been reported previously. In this report, we describe the common facial dysmorphism consisting of bilateral low-set ears, depressed nasal bridge with overhanging columella, elongated, upslanted palpebral fissures, persistent long philtrum with a thin vermilion border of the upper lip in a cohort of seven patients with GLIS3 mutations and report the emergence of a distinct, probably recognizable facial gestalt in this group which evolves with age. © 2016 Wiley Periodicals, Inc.


Assuntos
Hipotireoidismo Congênito/genética , Diabetes Mellitus/genética , Doenças Renais Policísticas/genética , Fatores de Transcrição/genética , Criança , Pré-Escolar , Hipotireoidismo Congênito/fisiopatologia , Proteínas de Ligação a DNA , Diabetes Mellitus/fisiopatologia , Face/fisiopatologia , Feminino , Humanos , Recém-Nascido , Masculino , Mutação , Doenças Renais Policísticas/fisiopatologia , Proteínas Repressoras , Transativadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA