Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 21(6): e49054, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32307852

RESUMO

Bacterial secretory preproteins are translocated across the inner membrane post-translationally by the SecYEG-SecA translocase. Mature domain features and signal peptides maintain preproteins in kinetically trapped, largely soluble, folding intermediates. Some aggregation-prone preproteins require chaperones, like trigger factor (TF) and SecB, for solubility and/or targeting. TF antagonizes the contribution of SecB to secretion by an unknown molecular mechanism. We reconstituted this interaction in vitro and studied targeting and secretion of the model preprotein pro-OmpA. TF and SecB display distinct, unsuspected roles in secretion. Tightly associating TF:pro-OmpA targets the translocase at SecA, but TF prevents pro-OmpA secretion. In solution, SecB binds TF:pro-OmpA with high affinity. At the membrane, when bound to the SecA C-tail, SecB increases TF and TF:pro-OmpA affinities for the translocase and allows pro-OmpA to resume translocation. Our data reveal that TF, a main cytoplasmic folding pathway chaperone, is also a bona fide post-translational secretory chaperone that directly interacts with both SecB and the translocase to mediate regulated protein secretion. Thus, TF links the cytoplasmic folding and secretion chaperone networks.


Assuntos
Proteínas de Escherichia coli , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fibrinogênio , Ligação Proteica , Canais de Translocação SEC/genética , Via Secretória
2.
Nat Rev Microbiol ; 15(1): 21-36, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890920

RESUMO

The general secretory (Sec) pathway comprises an essential, ubiquitous and universal export machinery for most proteins that integrate into, or translocate through, the plasma membrane. Sec exportome polypeptides are synthesized as pre-proteins that have cleavable signal peptides fused to the exported mature domains. Recent advances have re-evaluated the interaction networks of pre-proteins with chaperones that are involved in pre-protein targeting from the ribosome to the SecYEG channel and have identified conformational signals as checkpoints for high-fidelity targeting and translocation. The recent structural and mechanistic insights into the channel and its ATPase motor SecA are important steps towards the elucidation of the allosteric crosstalk that mediates secretion. In this Review, we discuss recent biochemical, structural and mechanistic insights into the consecutive steps of the Sec pathway - sorting and targeting, translocation and release - in both co-translational and post-translational modes of export. The architecture and conformational dynamics of the SecYEG channel and its regulation by ribosomes, SecA and pre-proteins are highlighted. Moreover, we present conceptual models of the mechanisms and energetics of the Sec-pathway dependent secretion process in bacteria.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico/fisiologia , Canais de Translocação SEC/metabolismo , Conformação Proteica , Proteínas SecA , Transdução de Sinais/fisiologia
3.
Nat Microbiol ; 1(8): 16107, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27573113

RESUMO

While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.


Assuntos
Membrana Celular/metabolismo , Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA