Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Exp Hematol Oncol ; 13(1): 50, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734654

RESUMO

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative treatment for myeloid malignancies such as some acute myeloid leukemias (AML) and high-risk myelodysplastic syndromes (MDS). It aims to eradicate the malignant clone using immunocompetent donor cells (graft-versus-leukemia effect, GVL). Unfortunately, relapse is the primary cause of transplant failure mainly related on HLA loss or downregulation and upregulation of inhibitory ligands on blasts which result in donor immune effector dysfunctions. METHODS: Between 2018 and 2021, we conducted a monocentric prospective study including 61 consecutive patients transplanted for AML or high-risk MDS. We longitudinally investigated immune cells at days + 30, + 90 and + 180 post-transplant from bone marrow and peripheral blood. We assessed the dynamics between myeloid derived suppressor cells (MDSCs) and T-cells. RESULTS: Among the 61 patients, 45 did not relapse over the first 12 months while 16 relapsed during the first year post-transplant. Through months 1 to 6, comparison with healthy donors revealed an heterogenous increase in MDSC frequency. In all recipients, the predominant MDSC subset was granulocytic with no specific phenotypic relapse signature. However, in relapsed patients, in vitro and in vivo functional analyses revealed that MDSCs from peripheral blood were highly immunosuppressive from day + 30 onwards, with an activated NLRP3 inflammasome signature. Only circulating immunosuppressive MDSCs were statistically correlated to circulating double-positive Tim3+LAG3+ exhausted T cells. CONCLUSION: Our simple in vitro functional assay defining MDSC immunosuppressive properties might serve as an early biomarker of relapse and raise the question of new preventive treatments targeting MDSCs in the future. Trial registration NCT03357172.

2.
Biotechnol Bioeng ; 119(12): 3537-3548, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36111790

RESUMO

Mesenchymal stem cell (MSC) products are promising therapeutic candidates to treat a wide range of pathologies. The successful commercialization of these cell therapies will, however, depend on the development of reproducible cell production processes. For this, using microcarriers as growth supports within controlled conditions may be a viable process option. Although increasing microcarrier concentration may be associated with greater productivity due to the increased available culture surface, additional friction or shocks between microcarriers are likely to lead to undesired cell death. However, data detailing the impact of microcarrier collisions on MSC growth remains scarce. The following work demonstrates that MSC growth on microcarriers is greatly influenced by particle concentration even when little impact is observed on the apparent growth rate. It is suggested that the apparent growth rate may result in an equilibrium between growth and death kinetics which are independently affected by particle concentration and that certain MSC quality attributes may be progressively degraded in parallel. In addition, the theoretical reduction of the MSC growth rate was modeled according to the ratio between the average interparticle distance and the Kolmogorov scale. This study is an original contribution toward understanding the hydrodynamic effects in microcarrier-based stem cell cultures.


Assuntos
Células-Tronco Mesenquimais , Técnicas de Cultura de Células , Terapia Baseada em Transplante de Células e Tecidos , Proliferação de Células
3.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457151

RESUMO

The secretome from hypoxia-preconditioned mesenchymal stem cells (MSCs) has been shown to promote resolution of inflammation and alleviate acute lung injury (ALI) through its immunomodulatory function. However, the effects of consecutive hypoxic culture on immunomodulatory function of the MSCs secretome are largely unclarified. Here, we intend to investigate the effects of consecutive hypoxia on therapeutic efficacy of conditioned medium derived from MSCs (MSCs-CM) in alleviating ALI. Human umbilical cord-derived MSCs (UC-MSCs) were consecutively cultured in 21% O2 (Nor-MSCs) or in 1% O2 (Hypo-MSCs) from passage 0. Their conditioned medium (Nor-CM and Hypo-CM respectively) was collected and administered into ALI models. Our findings confirmed that Hypo-MSCs exhibited increased proliferation ability and decreased cell senescence compared with Nor-MSCs. Consecutive hypoxia promoted UC-MSCs to secrete immunomodulatory cytokines, such as insulin-like growth factor 1(IGF1), IL10, TNFα-stimulated gene 6(TSG6), TGFß, and prostaglandin E2 (PGE2). Both Nor-CM and Hypo-CM could effectively limit lung inflammation, promote efferocytosis and modulate anti-inflammatory polarization of lung macrophages in ALI models. Moreover, the effects of Hypo-CM were more potent than Nor-CM. Taken together, our findings indicate that consecutive hypoxic cultures could not only promote both proliferation and quality of UC-MSCs, but also enhance the therapeutic efficacy of their secretome in mitigating lung inflammation by promoting efferocytosis and anti-inflammatory polarization of macrophages.


Assuntos
Lesão Pulmonar Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Pneumonia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/terapia , Anti-Inflamatórios/metabolismo , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Hipóxia/metabolismo , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pneumonia/metabolismo , Secretoma
4.
Biotechnol Bioeng ; 118(11): 4453-4464, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34387862

RESUMO

As a clinical dose requires a minimum of 106 cells per kilogram of patients, it is, therefore, crucial to develop a scalable method of production of Wharton Jelly mesenchymal stem cells (WJ-MSCs) with maintained inner characteristics. Scalable expansion of WJ-MSCs on microcarriers usually found in cell culture, involves specific cell detachment using trypsin and could have harmful effects on cells. In this study, the performance of batch, fed-batch, and perfused-continuous mode of culture were compared. The batch and fed-batch modes resulted in expansion factors of 5 and 43, respectively. The perfused-continuous mode strategy consisted of the implementation of a settling tube inside the bioreactor. The diameter of the tube was calculated to maintain microcarriers colonized by cells in the bioreactor whereas empty microcarriers (responsible for potentially damaging collisions) were removed, using a continuous flow rate based on MSCs physiological requirements. Thanks to this strategy, a maximal number of 800 million cells was obtained in a 1.5 L bioreactor in 10 days. Lastly, online dielectric spectroscopy was implemented in the bioreactor and indicated that cell growth could be monitored during the culture.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia
5.
Biotechnol Adv ; 50: 107765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33961977

RESUMO

Stem cell-based therapeutic products could be the key to treat the deadliest current pathologies, ranging from neuro-degenerative to respiratory diseases. However, in order to bring these innovative therapeutics to a commercialization stage, reproducible manufacturing of high quality cell products is required. Although advances in cell culture techniques have led to more robust production processes and dramatically accelerated the development of early-phase clinical studies, challenges remain before regulatory approval, particularly to define and implement science-based quality standards (essential pre-requisites for national health agencies). In this regard, using new methodologies, such as Quality By Design (QBD), to build the production process around drug quality, could significantly reduce the chance of product rejection. This review-based work aims to perform a QBD approach to Mesenchymal Stem Cell (MSC) manufacturing in standard two-dimensional flasks, using published studies which have determined the impact of individual process parameters on defined Critical Quality Attributes (CQA). Along with this bibliographic analysis, parameter criticality was determined during the two main manufacturing stages (cell extraction and cell amplification) along with an overall classification in view of identifying the Critical Process Parameters (CPP). The analysis was performed in view of an improved standardization between research teams, and should contribute to reduce the gap towards compliant Good Manufacturing Practice (cGMP) manufacturing.


Assuntos
Células-Tronco Mesenquimais , Técnicas de Cultura de Células , Ciclo Celular , Proliferação de Células
6.
Polymers (Basel) ; 12(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971891

RESUMO

(1) Background: A suitable scaffold with adapted mechanical and biological properties for ligament tissue engineering is still missing. (2) Methods: Different scaffold configurations were characterized in terms of morphology and a mechanical response, and their interactions with two types of stem cells (Wharton's jelly mesenchymal stromal cells (WJ-MSCs) and bone marrow mesenchymal stromal cells (BM-MSCs)) were assessed. The scaffold configurations consisted of multilayer braids with various number of silk layers (n = 1, 2, 3), and a novel composite scaffold made of a layer of copoly(lactic acid-co-(e-caprolactone)) (PLCL) embedded between two layers of silk. (3) Results: The insertion of a PLCL layer resulted in a higher porosity and better mechanical behavior compared with pure silk scaffold. The metabolic activities of both WJ-MSCs and BM-MSCs increased from day 1 to day 7 except for the three-layer silk scaffold (S3), probably due to its lower porosity. Collagen I (Col I), collagen III (Col III) and tenascin-c (TNC) were expressed by both MSCs on all scaffolds, and expression of Col I was higher than Col III and TNC. (4) Conclusions: the silk/PLCL composite scaffolds constituted the most suitable tested configuration to support MSCs migration, proliferation and tissue synthesis towards ligament tissue engineering.

7.
Biotechnol Prog ; 35(6): e2887, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31353825

RESUMO

The present study proposed to compare the impact of agitation mode (static, orbital, and mechanical) on the culture of mesenchymal stem cells extracted from the Wharton's jelly of umbilical cords (WJ-MSC), in a clinical grade culture medium, using human platelet lysate and different xeno-free microcarriers. Attachment, expansion, and detachment performances were characterized by a new dedicated tool of microscopic image posttreatment, allowing an in situ cell counting without detachment step. Results showed that performances in static mode were not necessarily representative of those obtained in dynamic mode. Moreover, impacts on nutrient consumptions and metabolite productions were identified, such as a higher glutamine consumption when Cytodex-1 microcarriers were used. The detachment strategy used was relatively efficient for Star-Plus, Plastic-Plus, and Hillex II, but not sufficient for Cytodex-1. Despite Cytodex-1 presented promising attachment and expansion performances, Star-Plus and Plastic-Plus showed a better compromise, respectively, for the orbital and the mechanical agitation modes.


Assuntos
Técnicas de Cultura de Células/métodos , Dextranos/química , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Glutamina/química , Glutamina/farmacologia , Humanos
8.
J Biomed Mater Res A ; 106(12): 3042-3052, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30194699

RESUMO

The challenge of finding an adapted scaffold for ligament tissue engineering remains unsolved after years of researches. A technology to fabricate a multilayer braided scaffold with flexible and elastic poly (l-lactide-co-caprolactone) (PLCL 85/15) has been recently pioneered by our team. In this study, polyelectrolyte multilayer films (PEM) with poly-l-lysine (PLL)/ hyaluronic acid (HA) were deposited on this scaffold. After PEM modification, polygonal (PLL) and particle-like (HA) structures were present on the braided scaffold with no significant variation of fibers Young's modulus. Wharton's jelly mesenchymal stem cells (WJ-MSC) and bone marrow mesenchymal stem cells (BM-MSC) showed good metabolic activity on scaffolds. They presented a spindled shape along the fiber longitudinal direction, and crossed the fibers to form cell bridges. Collagen type I, collagen type III, and tenascin-C secreted by MSCs were detected on day 14. Moreover, one-layer modified scaffold presented increased chemotaxis. As a conclusion, our results indicate that this braided PLCL scaffold with one-layer PEM modification shows inspiring potential with satisfying mechanical properties and biocompatibility. It opens new perspectives to incorporate growth factors within PEM-modified braided PLCL scaffold for ligament tissue engineering and to recruit endogenous cells after implantation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3042-3052, 2018.


Assuntos
Ácido Hialurônico/química , Ligamentos/citologia , Células-Tronco Mesenquimais/citologia , Poliésteres/química , Polilisina/química , Alicerces Teciduais/química , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/metabolismo , Módulo de Elasticidade , Humanos , Ácido Hialurônico/metabolismo , Ligamentos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Poliésteres/metabolismo , Polilisina/metabolismo , Engenharia Tecidual/métodos , Geleia de Wharton/citologia , Geleia de Wharton/metabolismo
9.
J Tissue Eng Regen Med ; 12(2): 360-369, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28486755

RESUMO

Scaffolds laden with stem cells are a promising approach for articular cartilage repair. Investigations have shown that implantation of artificial matrices, growth factors or chondrocytes can stimulate cartilage formation, but no existing strategies apply mechanical stimulation on stratified scaffolds to mimic the cartilage environment. The purpose of this study was to adapt a spraying method for stratified cartilage engineering and to stimulate the biosubstitute. Human mesenchymal stem cells from bone marrow were seeded in an alginate (Alg)/hyaluronic acid (HA) or Alg/hydroxyapatite (Hap) gel to direct cartilage and hypertrophic cartilage/subchondral bone differentiation, respectively, in different layers within a single scaffold. Homogeneous or composite stratified scaffolds were cultured for 28 days and cell viability and differentiation were assessed. The heterogeneous scaffold was stimulated daily. The mechanical behaviour of the stratified scaffolds were investigated by plane-strain compression tests. Results showed that the spraying process did not affect cell viability. Moreover, cell differentiation driven by the microenvironment was increased with loading: in the layer with Alg/HA, a specific extracellular matrix of cartilage, composed of glycosaminoglycans and type II collagen was observed, and in the Alg/Hap layer more collagen X was detected. Hap seemed to drive cells to a hypertrophic chondrocytic phenotype and increased mechanical resistance of the scaffold. In conclusion, mechanical stimulations will allow for the production of a stratified biosubstitute, laden with human mesenchymal stem cells from bone marrow, which is capable in vivo to mimic all depths of chondral defects, thanks to an efficient combination of stem cells, biomaterial compositions and mechanical loading.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Estresse Mecânico , Alicerces Teciduais/química , Idoso , Alginatos/farmacologia , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Durapatita/farmacologia , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade
10.
Lasers Med Sci ; 33(1): 165-171, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29181642

RESUMO

Pressure ulcers (PU) are wounds located mainly on bone surfaces where the tissue under pressure suffers ischemia leading to cellular lesion and necrosis , its causes and the healing process depend on several factors. The aim of this study was evaluating the gene expression of inflammatory/reparative factors: IL6, TNF, VEGF, and TGF, which take part in the tissue healing process under effects of low-level laser therapy (LLLT). In order to perform lesion area analysis, PUs were photographed and computer analyzed. Biochemical analysis was performed sa.mpling ulcer border tissue obtained through biopsy before and after laser therapy and quantitative real-time PCR (qRT-PCR) analysis. The study comprised eight individuals, mean age sixty-two years old, and sacroiliac and calcaneous PU, classified as degree III and IV according to the National Pressure Ulcer Advisory Panel (NPUAP). PUs were irradiated with low-level laser (InGaAIP, 100 mW, 660 nm), energy density 2 J/cm2, once a day, with intervals of 24 h, totaling 12 applications. The lesion area analysis revealed averaged improvement of the granulation tissue size up to 50% from pre- to post-treatment. qRT-PCR analysis revealed that IL6 values were not significantly different before and after treatment, TNF gene expression was reduced, and VEFG and TGF-ß gene expression increased after treatment. After LLLT, wounds presented improvement in gross appearance, with increase in factors VEFG and TGF-ß, and reduction of TNF; despite our promising results, they have to be analyzed carefully as this study did not have a control group.


Assuntos
Biomarcadores/metabolismo , Diabetes Mellitus/genética , Regulação da Expressão Gênica , Inflamação/genética , Terapia com Luz de Baixa Intensidade , Úlcera por Pressão/genética , Úlcera por Pressão/radioterapia , Cicatrização/efeitos da radiação , Diabetes Mellitus/radioterapia , Feminino , Tecido de Granulação/patologia , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética
11.
Biomed Mater Eng ; 28(s1): S113-S119, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28372286

RESUMO

Liver transplantation is the definitive treatment for patients with end-stage liver diseases (ESLD). However, it is hampered by shortage of liver donor. Liver tissue engineering, aiming at fabricating new livers in vitro, provides a potential resolution for donor shortage. Three elements need to be considered in liver tissue engineering: seeding cell resources, scaffolds and bioreactors. Studies have shown potential cell sources as hepatocytes, hepatic cell line, mesenchymal stem cells and others. They need scaffolds with perfect biocompatiblity, suitable micro-structure and appropriate degradation rate, which are essential charateristics for cell attachment, proliferation and secretion in forming extracellular matrix. The most promising scaffolds in research include decellularized whole liver, collagens and biocompatible plastic. The development and function of cells in scaffold need a microenvironment which can provide them with oxygen, nutrition, growth factors, et al. Bioreactor is expected to fulfill these requirements by mimicking the living condition in vivo. Although there is great progress in these three domains, a large gap stays still between their researches and applications. Herein, we summarized the recent development in these three major fields which are indispensable in liver tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Hepatócitos/citologia , Fígado/citologia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Reatores Biológicos , Humanos , Fígado/crescimento & desenvolvimento , Fígado Artificial
12.
Biomed Mater Eng ; 28(s1): S129-S138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28372288

RESUMO

BACKGROUND: Mesenchymal stem cells (MSC) have been shown to have potent immunoregulatory effects. They are able to mitigate inflammation in many contexts of immune disorders, including autoimmune diseases and graft-versus-host disease (GVHD). Endotoxemia can induce systematic inflammation in the body. In this study, we try to investigate whether MSC can attenuate inflammation in models of LPS-induced endotoxemia. METHODS: Bone marrow MSC (BMSC) were isolated and expanded from rats of 4~6-week age. Adult mice were divided randomly into Control group, Model group and BMSC group. LPS were injected peritoneally into mice of Model group and BMSC group to induce endotoxemia. For BMSC group mice, 1×106 BMSC were injected through tail vein 1 hour after LPS application. Animals were sacrificed after 24 hours. Inflammatory damage in lungs and livers were detected through histochemistry. Wet/dry ratio of lung tissues was calculated, levels of inflammatory factors as IL-1ß and TNF-α in lung tissues were measured through ELISA. RESULTS: Inflammatory pathological changes in lung and liver in BMSC group were comparable to those in Model group. Moreover, in some animals, the injuries were exacerbated after BMSC treatment. Accordingly, wet/dry ratio of lung in BMSC group mice was higher than that in Model group mice. IL-1ß level in BMSC-treated group mice was significantly augmented, however, no significant changes were detected between these two groups for level of TNF-α. CONCLUSION: Our results showed that application of BMSC in LPS-induced endotoxemia models couldn't attenuate the inflammatory injuries in tissues. Although BMSC have been shown to be able to induce immune inhibition, however, in some instances, their immuno-inhibitory function might be regulated by the local environment.


Assuntos
Endotoxemia/terapia , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais , Animais , Células Cultivadas , Modelos Animais de Doenças , Endotoxemia/complicações , Endotoxemia/imunologia , Endotoxemia/patologia , Inflamação/complicações , Inflamação/imunologia , Inflamação/patologia , Interleucina-1beta/análise , Interleucina-1beta/imunologia , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/imunologia
13.
Photomed Laser Surg ; 34(12): 652-656, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27898256

RESUMO

BACKGROUND: The temporomandibular joint (TMJ) is a structure of the craniofacial complex affected by neurological diseases. Orthopedic and musculoskeletal changes can also cause temporomandibular disorders (TMD) and pain. Low-level laser (LLL) therapy has been studied in the treatment of temporomandibular jaw (TMJ) dysfunction, and controversial results were obtained. OBJECTIVE: The objective of this work was comparing the physiotherapeutic and drug protocol (PDP) to LLL therapy in the treatment of pain associated with TMD. METHODS: A sample of 60 female patients, 20-50 years of age, TMD triggering agents (stress, parafunctional habits) controlled, was randomly divided into three groups, group 1 (G1)-LLL (780 nm laser, dose of 35.0 J/cm2, for 20 sec, thrice a week, for 4 weeks); group 2 (G2)-PDP (hot packs thrice a day, morning, afternoon, and evening, for 15 min, exercise of opening and closing the mouth, twice a day, myorelaxing and anti-inflammatory drug administration); and group 3 (G3)-Placebo (450 nm halogen lamp, Max LD Gnatus, light curing unit). RESULTS: Patients were evaluated every return appointment for the presence (P) or absence (A) of pain for 4 weeks and results were statistically analyzed. First week: 60% of G1, 100% G2, and 70% of G3-related pain. Second week: 55% of G1, 15% of G2, and 100% of G3-related pain. Third week: 10% of G1, 15% of G2, and 85% of G3-related pain. Last week: 0% of G1, 0% of G2, and 100% of G3-related pain. CONCLUSIONS: Based on obtained data, we concluded that, compared to PDP, LLL treatment is effective to control pain associated with TMD.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Manejo da Dor/métodos , Transtornos da Articulação Temporomandibular/terapia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade
14.
Photomed Laser Surg ; 33(12): 610-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26580583

RESUMO

OBJECTIVE: The objective of this study was to evaluate the effect of laser irradiation on dog bone marrow stem cells. BACKGROUND DATA: Low doses of low-level red laser positively affect the viability of mesenchymal stem cells, and also increase proliferation. METHODS: Low-level laser (wavelength, 660 nm; power output, 50 mW), was applied to dog bone marrow stem cell cultures (DBMSC). The energy densities delivered varied from 1 to 12J/cm(2). The effect of the laser irradiation was evaluated on cell proliferation measured with the MTT colorimetric test, cell cycle phase, and on lipidic peroxidation (free radical production). RESULTS: The results indicate that laser irradiation to DBMSC did not change the morphology of the cells, but significantly increased their viability and the number of cells at the G2/M phase with 6, 10, and 12 J/cm(2). On the other hand, malonaldehyde production was significantly enhanced with 8 J/cm(2). CONCLUSIONS: The parameters used to irradiate DBMSC increased significantly proliferation without producing high levels of reactive oxygen species (ROS).


Assuntos
Proliferação de Células/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais/efeitos da radiação , Animais , Células Cultivadas , Cães , Humanos
15.
Nanomedicine (Lond) ; 10(5): 753-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25816878

RESUMO

AIMS: Mesenchymal stem cells (MSCs) from adult bone marrow provide an exciting and promising stem cell population for the repair of bone in skeletal diseases. Here, we describe a new generation of collagen nanofiber implant functionalized with growth factor BMP-7 nanoreservoirs and equipped with human MSC microtissues (MTs) for regenerative nanomedicine. MATERIALS & METHODS: By using a 3D nanofibrous collagen membrane and by adding MTs rather than single cells, we optimize the microenvironment for cell colonization, differentiation and growth. RESULTS & CONCLUSION: Furthermore, in this study, we have shown that by combining BMP-7 with these MSC MTs in this double 3D environment, we further accelerate bone growth in vivo. The strategy described here should enhance the efficiency of therapeutic implants compared with current simplistic approaches used in the clinic today based on collagen implants soaked in bone morphogenic proteins.


Assuntos
Regeneração Óssea , Transplante de Células-Tronco Mesenquimais , Animais , Proteína Morfogenética Óssea 7/administração & dosagem , Substitutos Ósseos , Diferenciação Celular , Microambiente Celular , Colágeno , Humanos , Masculino , Camundongos , Camundongos Nus , Nanofibras , Nanomedicina , Osteogênese , Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais
16.
Biomed Mater Eng ; 25(1 Suppl): 41-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25538054

RESUMO

Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging. Mesenchymal stem cells (MSCs) have been proven to be a promising source of cells for regenerative medicine, and to be useful in the treatment of pathologies in which tissue damage is linked to oxidative stress. Moreover, MSCs appeared to efficiently manage oxidative stress and to be more resistant to oxidative insult than normal somatic cells, making them an interesting and testable model for the role of oxidative stress in the aging process. In addition, aging is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Also, there is an obvious link between intracellular reactive oxygen species levels and cellular senescence. To date, few studies have investigated the promotion of aging by oxidative stress on human MSCs, and the mechanism by which oxidative stress induce stem cell aging is poorly understood. In this context, the aim of this review is to gain insight the current knowledge about the molecular mechanisms of aging-induced oxidative stress in human MSCs.


Assuntos
Envelhecimento/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos
17.
Biomed Mater Eng ; 25(1 Suppl): 137-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25538064

RESUMO

The shortage of organ resource has been limiting the application of liver transplantation. Bioartificial liver construction is increasingly focused as a replacement treatment. To product a bioartificial liver, three elements must be considered: seeding cells, scaffold and bioreactor. Recent studies have shown that several methods can successfully differentiate MSC (mesenchymal stem cells) derived from Wharton's jelly into hepatocyte, such as stimulating MSC by cytokines and growth factors, direct and indirect co-culture MSC with hepatocytes, or promote MSC differentiation by 3-dimensional matrix. In some cases, differentiation of MSC into hepatocytes can also be an alternative approach for whole organ transplantation in treatment of acute and chronic liver diseases. In this review, the characterization of MSC from Wharton's jelly, their potential of application in liver tissue engineering on base of decellularized scaffold, their status of banking and their preclinical work performed will be discussed.


Assuntos
Fígado Artificial , Células-Tronco Mesenquimais/citologia , Técnicas de Cultura de Órgãos/instrumentação , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Geleia de Wharton/citologia , Reatores Biológicos , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Transplante de Células-Tronco Mesenquimais/instrumentação , Células-Tronco Mesenquimais/fisiologia , Desenho de Prótese
18.
Biomed Mater Eng ; 24(1 Suppl): 47-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24928917

RESUMO

While mesenchymal stem cells represent an interesting cell source for regenerative medicine, several points have to be investigated to improve their use in clinical, and in particular in the elderly population. This work studied the proliferation capacity of mesenchymal stem cells isolated from human bone marrow in function of donor's age. Doubling time after in vitro culture, clonogenicity and phenotype were analyzed in 17 samples ranging from 3 to 85 years old (mean 47 ± 27). Results showed an increase in the doubling time for cell coming from old donor compared to cells coming from young ones. This was accompanied by a decrease in clonogenicity while no changes were observe in cell phenotype. In conclusion, this study showed an effect of donor's age on the proliferation capacity of mesenchymal stem cells isolated from bone marrow that was correlated to a decrease in clonogenicity. The comprehension of molecular mechanism involved in this process could help to improve the clinical application of mesenchymal stem cells.


Assuntos
Fatores Etários , Proliferação de Células/fisiologia , Ensaio de Unidades Formadoras de Colônias/métodos , Células-Tronco Mesenquimais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/citologia , Células Cultivadas , Criança , Pré-Escolar , Humanos , Pessoa de Meia-Idade , Medicina Regenerativa , Adulto Jovem
19.
Biomed Mater Eng ; 22(1-3): 105-11, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22766708

RESUMO

Liver diseases have become one of the most important causes of morbidity and mortality in the world. Cell therapy and liver transplantation are though to be two treatment options well accepted. However, the shortage of cells sources in cytotherapy and the lack of liver donor in liver transplantation are the major obstacles for the performance of these treatment methods. It urged us to find new origins of extra-hepatic cells. A number of recent studies show that extra-hepatic mesenchymal stem cells (MSC) from different tissues can be differentiated into hepatocytes like cells (HLC). Several hepatic differentiation protocols of MSC have been published in recent years, based on cellular stimulation with exogenous cytokines/growth factors, co-culture with fetal or adult hepatocytes, 2- or 3-dimensional (2D, 3D) matrices to favor differentiation. Independently from the starting stem cells population used, some minimal criteria must be fulfilled to ensure therapeutic success: in vitro expandability, expression of hepatic like surface markers, with hepatic cell functions, and minimal or absent immunogenicity in the recipient host. In this review, we focused on stem cells originated from bone marrow, umbilical cord and adipose tissue which are widely investigated in recent years and have been proved to have liver regenerative potential, the factors used to differentiate stem cells to hepatocyte-like cells and the methods used to investigate these cells.


Assuntos
Hepatócitos/citologia , Regeneração Hepática , Fígado/fisiologia , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Humanos , Fígado/citologia , Cordão Umbilical/citologia
20.
BMC Cell Biol ; 12: 12, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21450070

RESUMO

BACKGROUND: In the bone marrow, hematopietic and mesenchymal stem cells form a unique niche in which the oxygen tension is low. Hypoxia may have a role in maintaining stem cell fate, self renewal and multipotency. However, whereas most studies addressed the effect of transient in vitro exposure of MSC to hypoxia, permanent culture under hypoxia should reflect the better physiological conditions. RESULTS: Morphologic studies, differentiation and transcriptional profiling experiments were performed on MSC cultured in normoxia (21% O2) versus hypoxia (5% O2) for up to passage 2. Cells at passage 0 and at passage 2 were compared, and those at passage 0 in hypoxia generated fewer and smaller colonies than in normoxia. In parallel, MSC displayed (>4 fold) inhibition of genes involved in DNA metabolism, cell cycle progression and chromosome cohesion whereas transcripts involved in adhesion and metabolism (CD93, ESAM, VWF, PLVAP, ANGPT2, LEP, TCF1) were stimulated. Compared to normoxic cells, hypoxic cells were morphologically undifferentiated and contained less mitochondrias. After this lag phase, cells at passage 2 in hypoxia outgrew the cells cultured in normoxia and displayed an enhanced expression of genes (4-60 fold) involved in extracellular matrix assembly (SMOC2), neural and muscle development (NOG, GPR56, SNTG2, LAMA) and epithelial development (DMKN). This group described herein for the first time was assigned by the Gene Ontology program to "plasticity". CONCLUSION: The duration of hypoxemia is a critical parameter in the differentiation capacity of MSC. Even in growth promoting conditions, hypoxia enhanced a genetic program that maintained the cells undifferentiated and multipotent. This condition may better reflect the in vivo gene signature of MSC, with potential implications in regenerative medicine.


Assuntos
Diferenciação Celular , Hipóxia Celular , Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Contagem de Células , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica , Células-Tronco Multipotentes/metabolismo , Pesquisa com Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA