Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2212474120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626556

RESUMO

Plants respond to oxygen deprivation by activating the expression of a set of hypoxia-responsive genes (HRGs). The master regulator of this process is a small group of transcription factors belonging to group VII of the ethylene response factors (ERF-VIIs). ERF-VIIs are highly unstable under aerobic conditions due to the continuous oxidation of their characteristic Cys residue at the N terminus by plant cysteine oxidases (PCOs). Under hypoxia, PCOs are inactive and the ERF-VIIs activate transcription of the HRGs required for surviving hypoxia. However, if the plant exposed to hypoxia has limited sugar reserves, the activity of ERF-VIIs is severely dampened. This suggests that oxygen sensing by PCO/ERF-VII is fine-tuned by another sensing pathway, related to sugar or energy availability. Here, we show that oxygen sensing by PCO/ERF-VII is controlled by the energy sensor target of rapamycin (TOR). Inhibition of TOR by genetic or pharmacological approaches leads to a much lower induction of HRGs. We show that two serine residues at the C terminus of RAP2.12, a major ERF-VII, are phosphorylated by TOR and are needed for TOR-dependent activation of transcriptional activity of RAP2.12. Our results demonstrate that oxygen and energy sensing converge in plants to ensure an appropriate transcription of genes, which is essential for surviving hypoxia. When carbohydrate metabolism is inefficient in producing ATP because of hypoxia, the lower ATP content reduces TOR activity, thus attenuating the efficiency of induction of HRGs by the ERF-VIIs. This homeostatic control of the hypoxia-response is required for the plant to survive submergence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oxigênio , Fosfatidilinositol 3-Quinases , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carboidratos , Cisteína Dioxigenase/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hipóxia , Oxigênio/metabolismo , Açúcares/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo
2.
Plant Cell ; 34(6): 2150-2173, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35218346

RESUMO

In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.


Assuntos
Arabidopsis , Vesículas Revestidas por Clatrina , Arabidopsis/genética , Arabidopsis/metabolismo , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/química , Vesículas Revestidas por Clatrina/metabolismo , Endocitose , Proteoma/metabolismo , Proteômica , Fator de Transcrição AP-1/análise , Fator de Transcrição AP-1/metabolismo
3.
Life Sci Alliance ; 4(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34583930

RESUMO

The DNA of all organisms is constantly damaged by physiological processes and environmental conditions. Upon persistent damage, plant growth and cell proliferation are reduced. Based on previous findings that RBR1, the only Arabidopsis homolog of the mammalian tumor suppressor gene retinoblastoma, plays a key role in the DNA damage response in plants, we unravel here the network of RBR1 interactors under DNA stress conditions. This led to the identification of homologs of every DREAM component in Arabidopsis, including previously not recognized homologs of LIN52. Interestingly, we also discovered NAC044, a mediator of DNA damage response in plants and close homolog of the major DNA damage regulator SOG1, to directly interact with RBR1 and the DREAM component LIN37B. Consistently, not only mutants in NAC044 but also the double mutant of the two LIN37 homologs and mutants for the DREAM component E2FB showed reduced sensitivities to DNA-damaging conditions. Our work indicates the existence of multiple DREAM complexes that work in conjunction with NAC044 to mediate growth arrest after DNA damage.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Dano ao DNA/genética , Fatores de Transcrição E2F/metabolismo , Proteínas Mutantes/metabolismo , Transdução de Sinais/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Pontos de Checagem do Ciclo Celular/genética , Reparo do DNA/genética , Fatores de Transcrição E2F/genética , Regulação da Expressão Gênica de Plantas , Proteínas Mutantes/genética , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Transativadores/genética
4.
Nat Commun ; 12(1): 3050, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031427

RESUMO

Clathrin-mediated endocytosis (CME) is the gatekeeper of the plasma membrane. In contrast to animals and yeasts, CME in plants depends on the TPLATE complex (TPC), an evolutionary ancient adaptor complex. However, the mechanistic contribution of the individual TPC subunits to plant CME remains elusive. In this study, we used a multidisciplinary approach to elucidate the structural and functional roles of the evolutionary conserved N-terminal Eps15 homology (EH) domains of the TPC subunit AtEH1/Pan1. By integrating high-resolution structural information obtained by X-ray crystallography and NMR spectroscopy with all-atom molecular dynamics simulations, we provide structural insight into the function of both EH domains. Both domains bind phosphatidic acid with a different strength, and only the second domain binds phosphatidylinositol 4,5-bisphosphate. Unbiased peptidome profiling by mass-spectrometry revealed that the first EH domain preferentially interacts with the double N-terminal NPF motif of a previously unidentified TPC interactor, the integral membrane protein Secretory Carrier Membrane Protein 5 (SCAMP5). Furthermore, we show that AtEH/Pan1 proteins control the internalization of SCAMP5 via this double NPF peptide interaction motif. Collectively, our structural and functional studies reveal distinct but complementary roles of the EH domains of AtEH/Pan1 in plant CME and connect the internalization of SCAMP5 to the TPLATE complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ligação ao Cálcio/química , Endocitose , Proteínas de Plantas/química , Ligação Proteica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Arabidopsis , Proteínas de Ligação ao Cálcio/genética , Membrana Celular/metabolismo , Cristalografia por Raios X , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , Transporte Proteico , Alinhamento de Sequência , Nicotiana/genética
5.
Mol Cell Proteomics ; 20: 100040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33372050

RESUMO

The F-box protein MORE AXILLARY GROWTH 2 (MAX2) is a central component in the signaling cascade of strigolactones (SLs) as well as of the smoke-derived karrikins (KARs) and the so far unknown endogenous KAI2 ligand (KL). The two groups of molecules are involved in overlapping and unique developmental processes, and signal-specific outcomes are attributed to perception by the paralogous α/ß-hydrolases DWARF14 (D14) for SL and KARRIKIN INSENSITIVE 2/HYPOSENSITIVE TO LIGHT (KAI2/HTL) for KAR/KL. In addition, depending on which receptor is activated, specific members of the SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE (SMXL) family control KAR/KL and SL responses. As proteins that function in the same signal transduction pathway often occur in large protein complexes, we aimed at discovering new players of the MAX2, D14, and KAI2 protein network by tandem affinity purification in Arabidopsis cell cultures. When using MAX2 as a bait, various proteins were copurified, among which were general components of the Skp1-Cullin-F-box complex and members of the CONSTITUTIVE PHOTOMORPHOGENIC 9 signalosome. Here, we report the identification of a novel interactor of MAX2, a type 5 serine/threonine protein phosphatase, designated PHYTOCHROME-ASSOCIATED PROTEIN PHOSPHATASE 5 (PAPP5). Quantitative affinity purification pointed at PAPP5 as being more present in KAI2 rather than in D14 protein complexes. In agreement, mutant analysis suggests that PAPP5 modulates KAR/KL-dependent seed germination under suboptimal conditions and seedling development. In addition, a phosphopeptide enrichment experiment revealed that PAPP5 might dephosphorylate MAX2 in vivo independently of the synthetic SL analog, rac-GR24. Together, by analyzing the protein complexes to which MAX2, D14, and KAI2 belong, we revealed a new MAX2 interactor, PAPP5, that might act through dephosphorylation of MAX2 to control mainly KAR/KL-related phenotypes and, hence, provide another link with the light pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Germinação , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Nicotiana/genética
6.
Plant Cell ; 32(11): 3388-3407, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32843435

RESUMO

Proximity labeling is a powerful approach for detecting protein-protein interactions. Most proximity labeling techniques use a promiscuous biotin ligase or a peroxidase fused to a protein of interest, enabling the covalent biotin labeling of proteins and subsequent capture and identification of interacting and neighboring proteins without the need for the protein complex to remain intact. To date, only a few studies have reported on the use of proximity labeling in plants. Here, we present the results of a systematic study applying a variety of biotin-based proximity labeling approaches in several plant systems using various conditions and bait proteins. We show that TurboID is the most promiscuous variant in several plant model systems and establish protocols that combine mass spectrometry-based analysis with harsh extraction and washing conditions. We demonstrate the applicability of TurboID in capturing membrane-associated protein interactomes using Lotus japonicus symbiotically active receptor kinases as a test case. We further benchmark the efficiency of various promiscuous biotin ligases in comparison with one-step affinity purification approaches. We identified both known and novel interactors of the endocytic TPLATE complex. We furthermore present a straightforward strategy to identify both nonbiotinylated and biotinylated peptides in a single experimental setup. Finally, we provide initial evidence that our approach has the potential to suggest structural information of protein complexes.


Assuntos
Biotina/química , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Arabidopsis/citologia , Arabidopsis/metabolismo , Biotina/metabolismo , Biotinilação , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lotus/genética , Lotus/metabolismo , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Temperatura , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
7.
Mol Cell Proteomics ; 19(8): 1248-1262, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32404488

RESUMO

Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-TERMINALLY ENCODED PEPTIDE 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical, and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.


Assuntos
Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Peptídeos/metabolismo , Proteômica , Estresse Fisiológico , Adaptação Fisiológica/genética , Arabidopsis/genética , Transporte Biológico/genética , Secas , Regulação da Expressão Gênica de Plantas , Osmose , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/metabolismo , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/genética , Transcrição Gênica
8.
Proc Natl Acad Sci U S A ; 116(32): 16018-16027, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31324745

RESUMO

Chromosome distribution at anaphase of mitosis and meiosis is triggered by separase, an evolutionarily conserved protease. Separase must be tightly regulated to prevent the untimely release of chromatid cohesion and disastrous chromosome distribution defects. Securin is the key inhibitor of separase in animals and fungi, but has not been identified in other eukaryotic lineages. Here, we identified PATRONUS1 and PATRONUS2 (PANS1 and PANS2) as the Arabidopsis homologs of securin. Disruption of PANS1 is known to lead to the premature separation of chromosomes at meiosis, and the simultaneous disruption of PANS1 and PANS2 is lethal. Here, we show that PANS1 targeting by the anaphase-promoting complex is required to trigger chromosome separation, mirroring the regulation of securin. We showed that PANS1 acts independently from Shugosins. In a genetic screen for pans1 suppressors, we identified SEPARASE mutants, showing that PANS1 and SEPARASE have antagonistic functions in vivo. Finally, we showed that the PANS1 and PANS2 proteins interact directly with SEPARASE. Altogether, our results show that PANS1 and PANS2 act as a plant securin. Remote sequence similarity was identified between the plant patronus family and animal securins, suggesting that they indeed derive from a common ancestor. Identification of patronus as the elusive plant securin illustrates the extreme sequence divergence of this central regulator of mitosis and meiosis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Cromossomos de Plantas/metabolismo , Securina/metabolismo , Separase/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Cromossomos de Plantas/genética , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Meiose , Mutação/genética , Ligação Proteica , Fatores de Tempo
9.
Plant Mol Biol ; 99(1-2): 79-93, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30511331

RESUMO

KEY MESSAGE: Here, we used a hxk1 mutant in the Col-0 background. We demonstrated that HXK1 regulates cell proliferation and expansion early during leaf development, and that HXK1 is involved in sucrose-induced leaf growth stimulation independent of GPT2. Furthermore, we identified KINγ as a novel HXK1-interacting protein. In the last decade, extensive efforts have been made to unravel the underlying mechanisms of plant growth control through sugar availability. Signaling by the conserved glucose sensor HEXOKINASE1 (HXK1) has been shown to exert both growth-promoting and growth-inhibitory effects depending on the sugar levels, the environmental conditions and the plant species. Here, we used a hxk1 mutant in the Col-0 background to investigate the role of HXK1 during leaf growth in more detail and show that it is affected in both cell proliferation and cell expansion early during leaf development. Furthermore, the hxk1 mutant is less sensitive to sucrose-induced cell proliferation with no significant increase in final leaf growth after transfer to sucrose. Early during leaf development, transfer to sucrose stimulates expression of GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSPORTER2 (GPT2) and represses chloroplast differentiation. However, in the hxk1 mutant GPT2 expression was still upregulated by transfer to sucrose although chloroplast differentiation was not affected, suggesting that GPT2 is not involved in HXK1-dependent regulation of leaf growth. Finally, using tandem affinity purification of protein complexes from cell cultures, we identified KINγ, a protein containing four cystathionine ß-synthase domains, as an interacting protein of HXK1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hexoquinase/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Hexoquinase/genética , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Sacarose/metabolismo
10.
Elife ; 72018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30192741

RESUMO

DE-ETIOLATED 1 (DET1) is an evolutionarily conserved component of the ubiquitination machinery that mediates the destabilization of key regulators of cell differentiation and proliferation in multicellular organisms. In this study, we provide evidence from Arabidopsis that DET1 is essential for the regulation of histone H2B monoubiquitination (H2Bub) over most genes by controlling the stability of a deubiquitination module (DUBm). In contrast with yeast and metazoan DUB modules that are associated with the large SAGA complex, the Arabidopsis DUBm only comprises three proteins (hereafter named SGF11, ENY2 and UBP22) and appears to act independently as a major H2Bub deubiquitinase activity. Our study further unveils that DET1-DDB1-Associated-1 (DDA1) protein interacts with SGF11 in vivo, linking the DET1 complex to light-dependent ubiquitin-mediated proteolytic degradation of the DUBm. Collectively, these findings uncover a signaling path controlling DUBm availability, potentially adjusting H2Bub turnover capacity to the cell transcriptional status.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histonas/metabolismo , Homeostase , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteólise , Ubiquitinação , Sequência de Aminoácidos , Arabidopsis/genética , Genes de Plantas , Peptídeos e Proteínas de Sinalização Intracelular , Luz , Mutação/genética , Fases de Leitura Aberta/genética , Peptídeos/química , Ligação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
Genes Dev ; 31(12): 1272-1287, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28743695

RESUMO

Hybrid seed lethality as a consequence of interspecies or interploidy hybridizations is a major mechanism of reproductive isolation in plants. This mechanism is manifested in the endosperm, a dosage-sensitive tissue supporting embryo growth. Deregulated expression of imprinted genes such as ADMETOS (ADM) underpin the interploidy hybridization barrier in Arabidopsis thaliana; however, the mechanisms of their action remained unknown. In this study, we show that ADM interacts with the AT hook domain protein AHL10 and the SET domain-containing SU(VAR)3-9 homolog SUVH9 and ectopically recruits the heterochromatic mark H3K9me2 to AT-rich transposable elements (TEs), causing deregulated expression of neighboring genes. Several hybrid incompatibility genes identified in Drosophila encode for dosage-sensitive heterochromatin-interacting proteins, which has led to the suggestion that hybrid incompatibilities evolve as a consequence of interspecies divergence of selfish DNA elements and their regulation. Our data show that imbalance of dosage-sensitive chromatin regulators underpins the barrier to interploidy hybridization in Arabidopsis, suggesting that reproductive isolation as a consequence of epigenetic regulation of TEs is a conserved feature in animals and plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Ciclo Celular/metabolismo , Epigênese Genética , Histona-Lisina N-Metiltransferase/farmacologia , Isolamento Reprodutivo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica de Plantas , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Hibridização Genética
12.
New Phytol ; 215(1): 157-172, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28503769

RESUMO

N6-adenosine methylation (m6 A) of mRNA is an essential process in most eukaryotes, but its role and the status of factors accompanying this modification are still poorly understood. Using combined methods of genetics, proteomics and RNA biochemistry, we identified a core set of mRNA m6 A writer proteins in Arabidopsis thaliana. The components required for m6 A in Arabidopsis included MTA, MTB, FIP37, VIRILIZER and the E3 ubiquitin ligase HAKAI. Downregulation of these proteins led to reduced relative m6 A levels and shared pleiotropic phenotypes, which included aberrant vascular formation in the root, indicating that correct m6 A methylation plays a role in developmental decisions during pattern formation. The conservation of these proteins amongst eukaryotes and the demonstration of a role in writing m6 A for the E3 ubiquitin ligase HAKAI is likely to be of considerable relevance beyond the plant sciences.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Metiltransferases/fisiologia , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Adenosina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Plant J ; 89(4): 730-745, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27862530

RESUMO

The evolutionarily conserved 12-subunit RNA polymerase II (Pol II) is a central catalytic component that drives RNA synthesis during the transcription cycle that consists of transcription initiation, elongation, and termination. A diverse set of general transcription factors, including a multifunctional TFIIF, govern Pol II selectivity, kinetic properties, and transcription coupling with posttranscriptional processes. Here, we show that TFIIF of Arabidopsis (Arabidopsis thaliana) resembles the metazoan complex that is composed of the TFIIFα and TFIIFß polypeptides. Arabidopsis has two TFIIFß subunits, of which TFIIFß1/MAN1 is essential and TFIIFß2/MAN2 is not. In the partial loss-of-function mutant allele man1-1, the winged helix domain of Arabidopsis TFIIFß1/MAN1 was dispensable for plant viability, whereas the cellular organization of the shoot and root apical meristems were abnormal. Forward genetic screening identified an epistatic interaction between the largest Pol II subunit nrpb1-A325V variant and the man1-1 mutation. The suppression of the man1-1 mutant developmental defects by a mutation in Pol II suggests a link between TFIIF functions in Arabidopsis transcription cycle and the maintenance of cellular organization in the shoot and root apical meristems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/deficiência , Fatores de Transcrição TFII/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , RNA Polimerases Dirigidas por DNA/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , RNA Polimerase II/genética , Fatores de Transcrição TFII/genética
14.
Nat Plants ; 2(11): 16165, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27797356

RESUMO

Regeneration of a tissue damaged by injury represents a physiological response for organ recovery1-3. Although this regeneration process is conserved across multicellular taxa, plants appear to display extremely high regenerative capacities, a feature widely used in tissue culture for clonal propagation and grafting4,5. Regenerated cells arise predominantly from pre-existing populations of division-competent cells6,7; however, the mechanisms by which these cells are triggered to divide in response to injury remain largely elusive8. Here, we demonstrate that the heterodimeric transcription factor complex ETHYLENE RESPONSE FACTOR115 (ERF115)-PHYTOCHROME A SIGNAL TRANSDUCTION1 (PAT1) sustains meristem function by promoting cell renewal after stem cell loss. High-resolution time-lapse imaging revealed that cell death promotes ERF115 activity in cells that are in direct contact with damaged cells, triggering divisions that replenish the collapsed stem cells. Correspondingly, the ERF115-PAT1 complex plays an important role in full stem cell niche recovery upon root tip excision, whereas its ectopic expression triggers neoplastic growth, correlated with activation of the putative target gene WOUND INDUCED DEDIFFERENTIATION1 (WIND1)9. We conclude that the ERF115-PAT1 complex accounts for the high regenerative potential of plants, granting them the ability to efficiently replace damaged cells with new ones.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Meristema/fisiologia , Fitocromo/genética , Regeneração , Fatores de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismo , Fatores de Transcrição/metabolismo
15.
Plant Physiol ; 172(2): 858-873, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27503603

RESUMO

Cytosolic monothiol glutaredoxins (GRXs) are required in iron-sulfur (Fe-S) cluster delivery and iron sensing in yeast and mammals. In plants, it is unclear whether they have similar functions. Arabidopsis (Arabidopsis thaliana) has a sole class II cytosolic monothiol GRX encoded by GRXS17 Here, we used tandem affinity purification to establish that Arabidopsis GRXS17 associates with most known cytosolic Fe-S assembly (CIA) components. Similar to mutant plants with defective CIA components, grxs17 loss-of-function mutants showed some degree of hypersensitivity to DNA damage and elevated expression of DNA damage marker genes. We also found that several putative Fe-S client proteins directly bind to GRXS17, such as XANTHINE DEHYDROGENASE1 (XDH1), involved in the purine salvage pathway, and CYTOSOLIC THIOURIDYLASE SUBUNIT1 and CYTOSOLIC THIOURIDYLASE SUBUNIT2, both essential for the 2-thiolation step of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification of tRNAs. Correspondingly, profiling of the grxs17-1 mutant pointed to a perturbed flux through the purine degradation pathway and revealed that it phenocopied mutants in the elongator subunit ELO3, essential for the mcm5 tRNA modification step, although we did not find XDH1 activity or tRNA thiolation to be markedly reduced in the grxs17-1 mutant. Taken together, our data suggest that plant cytosolic monothiol GRXs associate with the CIA complex, as in other eukaryotes, and contribute to, but are not essential for, the correct functioning of client Fe-S proteins in unchallenged conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Citosol/metabolismo , Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dano ao DNA , Regulação da Expressão Gênica de Plantas , Glutarredoxinas/genética , Immunoblotting , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo
16.
Plant Cell Physiol ; 57(9): 1801-13, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27497447

RESUMO

The stability of signaling proteins in eukaryotes is often controlled by post-translational modifiers. For polyubiquitination, specificity is assured by E3 ubiquitin ligases. Although plant genomes encode hundreds of E3 ligases, only few targets are known, even in the model Arabidopsis thaliana. Here, we identified the monothiol glutaredoxin GRXS17 as a substrate of the Arabidopsis E3 ubiquitin ligases RING DOMAIN LIGASE 3 (RGLG3) and RGLG4 using a substrate trapping approach involving tandem affinity purification of RING-dead versions. Simultaneously, we used a ubiquitin-conjugating enzym (UBC) panel screen to pinpoint UBC30 as a cognate E2 UBC capable of interacting with RGLG3 and RGLG4 and mediating auto-ubiquitination of RGLG3 and ubiquitination of GRXS17 in vitro. Accordingly, GRXS17 is ubiquitinated and degraded in an RGLG3- and RGLG4-dependent manner in planta. The truncated hemoglobin GLB3 also interacted with RGLG3 and RGLG4 but appeared to obstruct RGLG3 ubiquitination activity rather than being its substrate. Our results suggest that the RGLG family is intimately linked to the essential element iron.


Assuntos
Proteínas de Arabidopsis/metabolismo , Glutarredoxinas/metabolismo , Ligases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Glutarredoxinas/genética , Proteínas Ferro-Enxofre/metabolismo , Ligases/genética , Mutação , Oxilipinas/metabolismo , Plantas Geneticamente Modificadas , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
17.
Plant Sci ; 238: 312-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26259197

RESUMO

Plants synthesize carbohydrate binding proteins in response to adverse environmental conditions such as drought, heat, pathogen attack, etc. The Arabidopsis EULS3 lectin (referred to as ArathEULS3, encoded by At2g39050) has recently been linked to the drought stress response. In this study, endogenous binding partners for this protein have been investigated. Tandem affinity purifications and mass spectrometry analyses allowed the identification of two putative interacting proteins, Embryo-specific protein 3A (ATS3A, At2g41475) and Embryo-specific protein 3B (ATS3B, At5g62200). Bimolecular fluorescence complementation experiments confirmed the interaction between ArathEULS3 and ATS3B in closed stomata of Nicotiana benthamiana plants. Transgenic lines with reduced ArathEULS3 expression exhibited an aberrant ABA-induced stomatal closure compared to plants overexpressing ArathEULS3 and control plants suggesting a role for ArathEULS3 in ABA-induced stomatal closure. Stomata are known as the major route for Pseudomonas syringae entry into the plant tissues. Bacterial infection of wild type Arabidopsis thaliana plants was accompanied by a 6-fold increase of transcript levels for ArathEULS3. Furthermore, infection experiments with ArathEULS3 overexpression lines resulted in a clear reduction of P. syringae disease symptoms whereas plants with reduced ArathEULS3 expression showed the highest levels of leaf damage at 3 days post infection. These data point towards the physiological importance of ArathEULS3 for stomatal movement.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Lectinas/metabolismo , Estômatos de Plantas/fisiologia , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cromatografia de Afinidade , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lectinas/química , Lectinas/genética , Dados de Sequência Molecular , Movimento , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Doenças das Plantas/microbiologia , Estômatos de Plantas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Pseudomonas syringae/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
18.
Plant Physiol ; 169(2): 1405-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26320228

RESUMO

Jasmonate (JA) signaling in plants is mediated by the JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of several transcription factors regulating JA-inducible gene expression. The hormone JA-isoleucine triggers the interaction of JAZ repressor proteins with the F-box protein CORONATINE INSENSITIVE1 (COI1), part of an S-phase kinase-associated protein1/Cullin1/F-box protein COI1 (SCF(COI1)) E3 ubiquitin ligase complex, and their degradation by the 26S proteasome. In Arabidopsis (Arabidopsis thaliana), the JAZ family consists of 13 members. The level of redundancy or specificity among these members is currently not well understood. Here, we characterized JAZ12, encoded by a highly expressed JAZ gene. JAZ12 interacted with the transcription factors MYC2, MYC3, and MYC4 in vivo and repressed MYC2 activity. Using tandem affinity purification, we found JAZ12 to interact with SCF(COI1) components, matching with observed in vivo ubiquitination and with rapid degradation after treatment with JA. In contrast to the other JAZ proteins, JAZ12 also interacted directly with the E3 RING ligase KEEP ON GOING (KEG), a known repressor of the ABSCISIC ACID INSENSITIVE5 transcription factor in abscisic acid signaling. To study the functional role of this interaction, we circumvented the lethality of keg loss-of-function mutants by silencing KEG using an artificial microRNA approach. Abscisic acid treatment promoted JAZ12 degradation, and KEG knockdown led to a decrease in JAZ12 protein levels. Correspondingly, KEG overexpression was capable of partially inhibiting COI1-mediated JAZ12 degradation. Our results provide additional evidence for KEG as an important factor in plant hormone signaling and a positive regulator of JAZ12 stability.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Mutação , Plantas Geneticamente Modificadas , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Nicotiana/genética , Ubiquitina-Proteína Ligases/genética
19.
Proc Natl Acad Sci U S A ; 111(31): 11545-50, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049418

RESUMO

Reactive oxygen species (ROS) have been shown to be potent signaling molecules. Today, oxidation of cysteine residues is a well-recognized posttranslational protein modification, but the signaling processes steered by such oxidations are poorly understood. To gain insight into the cysteine thiol-dependent ROS signaling in Arabidopsis thaliana, we identified the hydrogen peroxide (H2O2)-dependent sulfenome: that is, proteins with at least one cysteine thiol oxidized to a sulfenic acid. By means of a genetic construct consisting of a fusion between the C-terminal domain of the yeast (Saccharomyces cerevisiae) AP-1-like (YAP1) transcription factor and a tandem affinity purification tag, we detected ∼ 100 sulfenylated proteins in Arabidopsis cell suspensions exposed to H2O2 stress. The in vivo YAP1-based trapping of sulfenylated proteins was validated by a targeted in vitro analysis of dehydroascorbate reductase2 (DHAR2). In DHAR2, the active site nucleophilic cysteine is regulated through a sulfenic acid-dependent switch, leading to S-glutathionylation, a protein modification that protects the protein against oxidative damage.


Assuntos
Arabidopsis/metabolismo , Metaboloma , Ácidos Sulfênicos/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Cinética , Metaboloma/efeitos dos fármacos , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
20.
Plant Cell ; 26(1): 210-29, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24443518

RESUMO

The transcriptional coactivator ANGUSTIFOLIA3 (AN3) stimulates cell proliferation during Arabidopsis thaliana leaf development, but the molecular mechanism is largely unknown. Here, we show that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR2, CONSTANS-LIKE5 (COL5), HECATE1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED. Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoters of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica de Plantas , Proteínas Repressoras/fisiologia , Adenosina Trifosfatases/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Diferenciação Celular , Proliferação de Células , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Ciclina B/genética , Ciclina B/metabolismo , Genoma de Planta , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA