Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Periodontal Res ; 59(2): 280-288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226427

RESUMO

OBJECTIVE: The objective of the study was to evaluate the expression of oxytocin receptors in normal and inflamed gingiva, as well as the effects of systemic administration of oxytocin in bone loss and gum inflammatory mediators in a rat model of experimental periodontitis. BACKGROUND DATA: Current evidence supports the hypothesis of a disbalance between the oral microbiota and the host's immune response in the pathogenesis of periodontitis. Increased complexity of the microbial biofilm present in the periodontal pocket leads to local production of nitrogen and oxygen-reactive species, cytokines, chemokines, and other proinflammatory mediators which contribute to periodontal tissue destruction and bone loss. Oxytocin has been suggested to participate in the modulation of immune and inflammatory processes. We have previously shown that oxytocin, nitric oxide, and endocannabinoid system interact providing a mechanism of regulation for systemic inflammation. Here, we aimed at investigating not only the presence and levels of expression of oxytocin receptors on healthy and inflamed gingiva, but also the effects of oxytocin treatment on alveolar bone loss, and systemic and gum expression of inflammatory mediators involved in periodontal tissue damage using ligature-induced periodontitis. Therefore, anti-inflammatory strategies oriented at modulating the host's immune response could be valuable adjuvants to the main treatment of periodontal disease. METHODS: We used an animal model of ligature-induced periodontitis involving the placement of a linen thread (Barbour flax 100% linen suture, No. 50; size 2/0) ligature around the neck of first lower molars of adult male rats. The ligature was left in place during the entire experiment (7 days) until euthanasia. Animals with periodontitis received daily treatment with oxytocin (OXT, 1000 µg/kg, sc.) or vehicle and/or atosiban (3 mg/kg, sc.), an antagonist of oxytocin receptors. The distance between the cement-enamel junction and the alveolar bone crest was measured in stained hemimandibles in the long axis of both buccal and lingual surfaces of both inferior first molars using a caliper. TNF-α levels in plasma were determined using specific rat enzyme-linked immunosorbent assays (ELISA). OXT receptors, IL-6, IL-1ß, and TNF-α expression were determined in gingival tissues by semiquantitative or real-time PCR. RESULTS: We show that oxytocin receptors are expressed in normal and inflamed gingival tissues in male rats. We also show that the systemic administration of oxytocin prevents the experimental periodontitis-induced increased gum expression of oxytocin receptors, TNF-α, IL-6, and IL-1ß (p < .05). Furthermore, we observed a reduction in bone loss in rats treated with oxytocin in our model. CONCLUSIONS: Our results demonstrate that oxytocin is a novel and potent modulator of the gingival inflammatory process together with bone loss preventing effects in an experimental model of ligature-induced periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Ratos , Masculino , Animais , Ocitocina/uso terapêutico , Ocitocina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptores de Ocitocina/metabolismo , Modelos Animais de Doenças , Periodontite/metabolismo , Gengiva/metabolismo , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/prevenção & controle , Perda do Osso Alveolar/etiologia , Processo Alveolar/metabolismo , Mediadores da Inflamação/metabolismo
2.
J Clin Exp Dent ; 12(12): e1201-e1205, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33282143

RESUMO

Mucosal ulcerations are an oral complication that can often affect kidney transplant patients, mostly due to the effect of immunosuppression. It has been frequently reported drug-induced ulceration or lymphoproliferative disorders with buccal manifestations however, some unusual disorders should also be considered, such as fungal infections, viruses, as well as opportunistic infection by other microorganisms. Determining the etiology and differential diagnose from other causes of mouth ulcers is very important for the adequate treatment of said lesion. Dental health of patients should also be taken into the account prior to the transplant surgery, since periodontal pockets are the main niche of microbial reservoir. Moreover, mixed with oral microbiota, parasites such as Trichomonas spp. can be found in the dental plaque of patients with periodontal disease. Particularly, Trichomonas spp. are anaerobic motile-flagellated protozoa that can both induce tissue damage and exacerbate preexistent injuries in vaginal and oral mucosa. Parasitic infection in the oral cavity has not been well studied and it is thought to be underreported. In the present study we report the first case in literature of presence of Trichomonas spp. as a potential etiological factor of the oral ulcerations of a kidney transplanted patient that remitted after antibiotic treatment. Key words:Immunosuppression, protozoan, buccal lesion, oral mucosa, kidney transplant.

3.
J Neuroinflammation ; 17(1): 290, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023623

RESUMO

BACKGROUND: Evidence shows significant heterogeneity in astrocyte gene expression and function. We previously demonstrated that brain-derived neurotrophic factor (BDNF) exerts protective effects on whole brain primary cultured rat astrocytes treated with 3-nitropropionic acid (3NP), a mitochondrial toxin widely used as an in vitro model of Huntington's disease (HD). Therefore, we now investigated 3NP and BDNF effects on astrocytes from two areas involved in HD: the striatum and the entire cortex, and their involvement in neuron survival. METHODS: We prepared primary cultured rat cortical or striatal astrocytes and treated them with BDNF and/or 3NP for 24 h. In these cells, we assessed expression of astrocyte markers, BDNF receptor, and glutamate transporters, and cytokine release. We prepared astrocyte-conditioned medium (ACM) from cortical and striatal astrocytes and tested its effect on a cellular model of HD. RESULTS: BDNF protected astrocytes from 3NP-induced death, increased expression of its own receptor, and activation of ERK in both cortical and striatal astrocytes. However, BDNF modulated glutamate transporter expression differently by increasing GLT1 and GLAST expression in cortical astrocytes but only GLT1 expression in striatal astrocytes. Striatal astrocytes released higher amounts of tumor necrosis factor-α than cortical astrocytes in response to 3NP but BDNF decreased this effect in both populations. 3NP decreased transforming growth factor-ß release only in cortical astrocytes, whereas BDNF treatment increased its release only in striatal astrocytes. Finally, we evaluated ACM effect on a cellular model of HD: the rat striatal neuron cell line ST14A expressing mutant human huntingtin (Q120) or in ST14A cells expressing normal human huntingtin (Q15). Neither striatal nor cortical ACM modified the viability of Q15 cells. Only ACM from striatal astrocytes treated with BDNF and ACM from 3NP + BDNF-treated striatal astrocytes protected Q120 cells, whereas ACM from cortical astrocytes did not. CONCLUSIONS: Data suggest that cortical and striatal astrocytes respond differently to mitochondrial toxin 3NP and BDNF. Moreover, striatal astrocytes secrete soluble neuroprotective factors in response to BDNF that selectively protect neurons expressing mutant huntingtin implicating that BDNF modulation of striatal astrocyte function has therapeutic potential against neurodegeneration.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/toxicidade , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Proteína Huntingtina/biossíntese , Nitrocompostos/toxicidade , Propionatos/toxicidade , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Feminino , Expressão Gênica , Humanos , Proteína Huntingtina/genética , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação/efeitos dos fármacos , Mutação/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Ratos , Ratos Wistar
4.
Eur J Neurosci ; 52(3): 2995-3001, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32372526

RESUMO

GnRH neuron activity is under the influence of multiple stimuli, including those coming from the endocannabinoid and the immune systems. Since it has been previously suggested that some of the main elements controlling the GnRH pulse generator possess the TRPV1 receptor, the aim of the present study was to evaluate the participation of the hypothalamic TRPV1, through its pharmacological blockade, in the activity of the hypothalamic-pituitary-testicular axis in male rats under basal or acute inflammatory conditions. Our hypothesis was based on the idea that the hypothalamic TRPV1 participates in the synthesis of the main neuromodulatory signals controlling GnRH, and therefore the reproductive axis. Our results showed that the hypothalamic TRPV1 blockade induced pro-inflammatory effects by increasing Tnfα and Il-1ß mRNA hypothalamic levels and inhibited the reproductive axis by affecting Gnrh, Kiss1 and Rfrp3 mRNA levels and decreasing plasma levels of luteinizing hormone and testosterone under basal conditions, without significant additive effects in rats exposed to systemic LPS. Altogether, these results suggest that the hypothalamic TRPV1 receptor participates in the regulation of the GnRH system, probably by modulating immune-dependent mechanisms.


Assuntos
Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Masculino , Neurônios/metabolismo , Ratos , Canais de Cátion TRPV/genética , Testosterona
5.
Reprod Biol ; 19(4): 329-339, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31757605

RESUMO

During an inflammatory process of the testis, the network of somatic, immune, and germ cell interactions is altered leading to organ dysfunction. In testicular biopsies of infertile men, spermatogenesis impairment is associated with reduced spermatogonia proliferation, increased number of immune cells, and content of pro-inflammatory cytokines. TNFα-TNFR and nitric oxide (NO)-NO synthase systems are up-regulated in models of testicular damage and in human testis with maturation arrest. The purpose of this study was to test the hypothesis that TNFα-TNFR system and NO alter the function of spermatogonia in the inflamed testis. We studied the effect of TNFα and NO on GC-1 spermatogonia cell cycle progression and death by flow cytometry. GC-1 cells expressed TNFR1 and TNFR2 (immunofluorescence). TNFα (10 and 50 ng/ml) and DETA-Nonoate (0.5 and 2 mM), a NO releaser, increased the percentage of cells in S-phase of the cell cycle and reduced the percentage in G1, inducing also cell apoptosis. TNFα effect was not mediated by oxidative stress unlike NO, since the presence of N-acetyl-l-cysteine (2.5 and 5.0 mM) prevented NO induced cell cycle arrest and death. GC-1 spermatogonia overpass NO induced cell cycle arrest but no TNFα, since after removal of NO, spermatogonia progressed through the cell cycle. We propose TNFα and NO might contribute to impairment of spermatogenesis by preventing adequate functioning of the spermatogonia population. Our results showed that TNFα and NO impaired spermatogonia cell cycle, inducing GC-1 arrest in the S phase.


Assuntos
Inflamação/fisiopatologia , Óxido Nítrico/fisiologia , Espermatogônias/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Apoptose , Ciclo Celular , Linhagem Celular , Humanos , Masculino , Estresse Oxidativo , Receptores do Fator de Necrose Tumoral/metabolismo , Espermatogênese
6.
J Cancer Res Clin Oncol ; 143(9): 1713-1732, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28432455

RESUMO

PURPOSE: Since combination of Toll-like receptor (TLR) ligands could boost antitumor immunity, we evaluated the efficacy of dendritic cell (DC) vaccines upon dual activation of TLR9 and TLR7 in breast cancer models. METHODS: DCs were generated from mouse bone marrow or peripheral blood from healthy human donors and stimulated with CpG1826 (mouse TLR9 agonist), CpG2006 or IMT504 (human TLR9 agonists) and R848 (TLR7 agonist). Efficacy of antitumor vaccines was evaluated in BALB/c mice bearing metastatic mammary adenocarcinomas. RESULTS: CpG-DCs improved the survival of tumor-bearing mice, reduced the development of lung metastases and generated immunological memory. However, dual activation of TLRs impaired the efficacy of DC vaccines. In vitro, we found that R848 inhibited CpG-mediated maturation of murine DCs. A positive feedback loop in TLR9 mRNA expression was observed upon CpG stimulation that was inhibited in the presence of R848. Impaired activation of NF-κB was detected when TLR9 and TLR7 were simultaneously activated. Blockade of nitric oxide synthase (NOS) and indoleamine-pyrrole-2,3-dioxygenase (IDO) improved the activation of CpG-DCs. When we evaluated the effect of combined activation of TLR9 and TLR7 in human DCs, we found that R848 induced robust DC activation that was inhibited by TLR9 agonists. CONCLUSIONS: These observations provide insight in the biology of TLR9 and TLR7 crosstalk and suggest caution in the selection of agonists for multiple TLR stimulation. Blockade of NOS and IDO could improve the maturation of antitumor DC vaccines. R848 could prove a useful adjuvant for DC vaccines in human patients.


Assuntos
Adenocarcinoma/terapia , Neoplasias da Mama/terapia , Vacinas Anticâncer/imunologia , Receptor 7 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas , Adjuvantes Imunológicos/farmacologia , Animais , Vacinas Anticâncer/farmacologia , Células Dendríticas/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
7.
Eur J Pharmacol ; 786: 224-233, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27266665

RESUMO

Excessive ethanol drinking has deleterious effects on the brain. However, the effects of alcohol on microglia, the main mediator of the brain's innate immune response remain poorly understood. On the other hand, the endocannabinoid system plays a fundamental role in regulating microglial reactivity and function. Here we studied the effects of acute ethanol exposure to murine BV2 microglial cells on N-acyl phosphatidylethanolamine-phospholipase D (NAPE-PLD), a major synthesizing enzyme of anandamide and other N-acylethanolamines. We found that ethanol downregulated microglial NAPE-PLD expression by activating cAMP/PKA and ERK1/2. These signaling pathways converged on increased phosphorylation of CREB. Moreover, ethanol induced and increase in histone acetyltransferase activity which led to higher levels of acetylation of histone H3. Taken together, our results suggest that ethanol actions on microglial NAPE-PLD expression might involve epigenetic mechanisms.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Etanol/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fosfolipase D/genética , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Histona Acetiltransferases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Microglia/citologia , Fatores de Tempo
8.
J Pineal Res ; 60(3): 360-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26882296

RESUMO

Optic neuritis (ON) is an inflammatory, demyelinating, and neurodegenerative condition of the optic nerve, which might induce permanent vision loss. Currently, there are no effective therapies for this disorder. We have developed an experimental model of primary ON in rats through a single microinjection of 4.5 µg of bacterial lipopolysaccharide (LPS) into the optic nerve. Since melatonin acts as a pleiotropic therapeutic agent in various neurodegenerative diseases, we analyzed the effect of melatonin on LPS-induced ON. For this purpose, LPS or vehicle were injected into the optic nerve from adult male Wistar rats. One group of animals received a subcutaneous pellet of 20 mg melatonin at 24 hr before vehicle or LPS injection, and another group was submitted to a sham procedure. Melatonin completely prevented the decrease in visual evoked potentials (VEPs), and pupil light reflex (PLR), and preserved anterograde transport of cholera toxin ß-subunit from the retina to the superior colliculus. Moreover, melatonin prevented microglial reactivity (ED1-immunoreactivity, P < 0.01), astrocytosis (glial fibrillary acid protein-immunostaining, P < 0.05), demyelination (luxol fast blue staining, P < 0.01), and axon (toluidine blue staining, P < 0.01) and retinal ganglion cell (Brn3a-immunoreactivity, P < 0.01) loss, induced by LPS. Melatonin completely prevented the increase in nitric oxide synthase 2, cyclooxygenase-2 levels (Western blot) and TNFα levels, and partly prevented lipid peroxidation induced by experimental ON. When the pellet of melatonin was implanted at 4 days postinjection of LPS, it completely reversed the decrease in VEPs and PLR. These data suggest that melatonin could be a promising candidate for ON treatment.


Assuntos
Melatonina/farmacocinética , Fármacos Neuroprotetores/farmacologia , Neurite Óptica/prevenção & controle , Animais , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Peroxidação de Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Neurite Óptica/induzido quimicamente , Neurite Óptica/metabolismo , Neurite Óptica/patologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
9.
J Pineal Res ; 54(2): 179-89, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22946773

RESUMO

Diabetic retinopathy (DR) is a leading cause of acquired blindness in adults, mostly affected by type 2 diabetes mellitus (T2DM). We have developed an experimental model of early T2DM in adult rats which mimics some features of human T2DM at its initial stages and provokes significant retinal alterations. The aim of this work was to analyze the effect of melatonin on retinal changes induced by the moderate metabolic derangement. For this purpose, adult male Wistar rats received a control diet or 30% sucrose in the drinking water. Three weeks after this treatment, animals were injected with vehicle or streptozotocin (STZ, 25 mg/kg). One day or 3 wk after vehicle or STZ injection, animals were subcutaneously implanted with a pellet of melatonin. Fasting and postprandial glycemia, and glucose, and insulin tolerance tests were analyzed. At 12 wk of treatment, animals which received a sucrose-enriched diet and STZ showed significant differences in metabolic tests, as compared with control groups. Melatonin, which did not affect glucose metabolism in control or diabetic rats, prevented the decrease in the electroretinogram a-wave, b-wave, and oscillatory potential amplitude, and the increase in retinal lipid peroxidation, NOS activity, TNFα, Müller cells glial fibrillary acidic protein, and vascular endothelial growth factor levels. In addition, melatonin prevented the decrease in retinal catalase activity. These results indicate that melatonin protected the retina from the alterations observed in an experimental model of DR associated with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Melatonina/uso terapêutico , Animais , Catalase/metabolismo , Eletrorretinografia , Glucose/metabolismo , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar , Tiobarbitúricos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Neuroimmunomodulation ; 19(5): 293-303, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22777139

RESUMO

OBJECTIVE: Periodontitis is an infectious disease leading to inflammation and destruction of tissue surrounding and supporting the tooth. The progress of the inflammatory response depends on the host's immune system and risk factors such as stress. The aim of the present study was to investigate the role of the endocannabinoid anandamide (AEA) in experimental periodontitis with restraint stress, since the endocannabinoid system is known to modulate the hypothalamo-pituitary-adrenal axis as well as immune functions and has been found in human gingival tissues. METHODS: Experimental periodontitis was induced by ligature around first inferior molars and immobilization stress for 2 h twice daily for 7 days in a rat model. RESULTS: Corticosterone plasma levels, locomotor activity, adrenal gland weight and bone loss were increased in periodontitis and stress groups, and there was also less weight gain. The inflammatory parameters such as prostaglandin E(2) (radioimmunoassay), nitric oxide (radioconversion of (14)C-arginine), tumor necrosis factor (TNF)-α (ELISA) and interleukin (IL)-1ß (Western blot) measured in the gingival tissue were significantly increased in the periodontitis groups compared to the control group. Local injection of AEA (10(-8)M, 30 µl) decreased corticosterone plasma levels and the content of the cytokines TNF-α and IL-1ß in gingival tissue in periodontitis-stress groups. These AEA-induced inhibitions were mediated by CB(1) and CB(2) cannabinoid receptors since the injection of both antagonists together, AM251 (10(-6)M) and AM630 (10(-6)M) in 30 µl, prevented these effects. CONCLUSION: The endocannabinoid AEA diminishes the inflammatory response in periodontitis even during a stressful situation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ácidos Araquidônicos/uso terapêutico , Agonistas de Receptores de Canabinoides/uso terapêutico , Endocanabinoides/uso terapêutico , Periodontite/tratamento farmacológico , Alcamidas Poli-Insaturadas/uso terapêutico , Estresse Psicológico/tratamento farmacológico , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/patologia , Animais , Peso Corporal/efeitos dos fármacos , Corticosterona/sangue , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Comportamento Exploratório/efeitos dos fármacos , Indóis/uso terapêutico , Interleucina-1beta/metabolismo , Masculino , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Periodontite/sangue , Periodontite/fisiopatologia , Piperidinas/uso terapêutico , Prostaglandinas E/metabolismo , Pirazóis/uso terapêutico , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Estresse Psicológico/sangue , Estresse Psicológico/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo
11.
Exp Neurol ; 224(1): 15-22, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20353777

RESUMO

Marihuana and alcohol consumption affect adversely reproduction by inhibiting the hypothalamic-pituitary-gonadal axis. The endocannabinoid system, present in the central nervous system and in peripheral tissues, participates in the regulation of hormones involved in the reproductive physiology such as luteinizing hormone, prolactin and oxytocin. This system is activated in response to pathophysiological conditions such as stress and inflammatory/infectious states as well as alcoholism and drug consumption acting as a negative modulator of reproductive function. The secretion of luteinizing hormone from the adenohypophysis is reduced, mainly through hypothalamic inhibitory action of cannabinoids and alcohol on luteinizing hormone releasing hormone release from its nervous terminals in the median eminence. This inhibitory effect is mediated, at least in part, by the activation of cannabinoid type 1 receptors. Cannabinoids also inhibit prolactin release from the lactotropes in the adenohypophysis acting locally and by increasing the release of hypothalamic dopamine mainly from tuberoinfundibular dopaminergic neurons in the external layer of the median eminence. On the contrary, ethanol stimulates prolactin release from the adenohypophysis as well as oxytocin from the neurohypophysis. Besides, endocannabinoids modulate oxytocin synthesis and release from the hypothalamic magnocellular neurons and neurohypophysis. In summary, all the results exposed in the present review suggest that there is interplay between the endocannabinoid system, hormones and neuropeptides in the control of reproduction and that this system mediates, at least in part, ethanol adverse effects on reproductive function.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Etanol/metabolismo , Hipotálamo/metabolismo , Hipófise/metabolismo , Animais , Canabinoides/farmacologia , Cannabis/metabolismo , Dopamina/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Prolactina/metabolismo , Receptores de Canabinoides/metabolismo , Reprodução/efeitos dos fármacos , Reprodução/fisiologia
12.
J Neuroimmunol ; 221(1-2): 32-41, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20207018

RESUMO

This study investigated the participation of the hypothalamic endocannabinoid system in the response to lipopolysaccharide (LPS) challenge evaluating oxytocin (OXT) and tumor necrosis factor-alpha (TNF-alpha) plasma levels in vivo and their release from hypothalamic fragments in vitro. LPS increased OXT and TNF-alpha release through anandamide-activation of hypothalamic cannabinoid receptor CB(1,) since the antagonist AM251 blocked this effect. Anandamide, through its receptors, also increased hypothalamic nitric oxide (NO) which inhibited OXT release, ending the stimulatory effect of the endocannabinoid. Our findings reveal a hypothalamic interaction between oxytocin, endocannabinoid and NO-ergic systems providing a regulation of the hypothalamic-neurohypophyseal axis under basal and stress conditions.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Hipotálamo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Ocitocina/sangue , Fator de Necrose Tumoral alfa/sangue , Análise de Variância , Animais , Ácidos Araquidônicos/farmacologia , Benzamidas/farmacologia , Moduladores de Receptores de Canabinoides/antagonistas & inibidores , Moduladores de Receptores de Canabinoides/farmacologia , Carbamatos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Indóis/farmacologia , Masculino , Óxido Nítrico/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Radioimunoensaio/métodos , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo
13.
Neuroimmunomodulation ; 17(3): 153-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20134190

RESUMO

The hypothalamo-neurohypophyseal system plays a role in homeostasis under a variety of stress conditions, including endotoxemia. Oxytocin (OXT) and vasopressin (VP) are important hormones synthesized by neurons in the hypothalamic paraventricular and supraoptic nuclei and released into different brain regions and from the neurohypophyseal terminals into the blood in response to many patho-physiological stimuli. However, the mechanism that controls OXT and VP secretion has not been fully elucidated. Nitric oxide (NO) is a known mediator that regulates the release of these hormones. The endocannabinoid system is a new intercellular system that modulates several neuroendocrine actions. Endocannabinoids (eCB) are released as retrograde messengers by many neurons, including hypothalamic magnocellular neurons and cannabinoid receptors are localized within these neurons, as well as in the anterior and posterior pituitary lobes, suggesting an eCB role in the production and release of OXT and VP. Lipopolysaccharide (LPS) injection is a model used as immune challenge. LPS causes a neuroendocrine response that is mediated by cytokines, tumor necrosis factor-alpha being one of them. We focused on NO and endocannabinoid system participation on OXT and VP production and secretion during basal and stress conditions and found that eCB affect basal OXT and VP secretion by acting differently at each level of the hypothalamo-neurohypophyseal system. After LPS, there is an increase in eCB synthesis that enhances OXT secretion.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Sistema Hipotálamo-Hipofisário/metabolismo , Sistemas Neurossecretores/metabolismo , Ocitocina/metabolismo , Estresse Fisiológico/imunologia , Vasopressinas/metabolismo , Animais , Citocinas/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Sistemas Neurossecretores/imunologia , Óxido Nítrico/metabolismo
14.
Ann N Y Acad Sci ; 1153: 35-47, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19236326

RESUMO

Nitric oxide (NO) was initially described as a mediator of endothelial relaxation, and now its participation is recognized in numerous physiological and pathological processes. It was demonstrated that lipopolysaccharide-stimulated corticotropin-releasing factor release involves NO production. Furthermore, it has been shown that interleukin (IL)-1, tumor necrosis factor (TNF)-alpha, IL-6, and IL-2 can stimulate adrenocorticotropic hormone release from anterior pituitary via NO. Also, we found that NO released from hypothalamic NOergic neurons in response to norepinephrine diffuses to luteinizing hormone-releasing hormone (LHRH) neurons that activate cyclooxygenase and guanylate cyclase. This activation results in an increase in prostaglandin E2 and cyclic guanosine monophosphate, respectively, which leads to the exocytosis of LHRH granules. During pathological conditions, such as manganese intoxication, NO production is increased, leading to an increase in LHRH secretion that can advance puberty. In another study we demonstrated that NO reduces oxytocin as well as vasopressin secretion from the posterior pituitary, suggesting it has a modulatory role during dehydration. An increase in NO synthase (NOS) activity and protein in the hippocampus and cerebellum was found in offspring of rats that were subjected to prenatal stress, and this was correlated with behavioral changes in adults. Also NO participates in signal transduction pathways in peripheral tissue in physiological processes, such as in corticosterone release from the adrenal gland. Pathological conditions, such as tumors of the head and neck, that are treated with radiation are followed by xerostomy. In a rat model, radiation diminished NOS activity in the submandibulary gland, and this was followed by inhibition in salivary secretion. In summary, this review describes the wide participation of NO in the cross-talk between neuroendocrine and neuroimmune systems in physiological and pathological processes.


Assuntos
Sistema Imunitário/metabolismo , Sistemas Neurossecretores/metabolismo , Óxido Nítrico/metabolismo , Animais , Corticosterona/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo
15.
Toxicol Sci ; 105(2): 295-302, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18603625

RESUMO

Manganese chloride (MnCl2) is capable of stimulating luteinizing hormone releasing hormone (LHRH) secretion in adult male Sprague-Dawley rats through the activation of the hypothalamic nitric oxide/cyclic guanosine monophosphate (cGMP)/protein kinase G pathway. The present study aimed to determine the involvement of specific neurotransmitters involved in this action. Our results indicate that dopamine, but not glutamic acid and prostaglandins, mediates the MnCl2 stimulated secretion of LHRH from medial basal hypothalami in vitro, as well as increases the activity of nitric oxide synthase. Furthermore, a biphasic response was observed in that gamma aminobutyric acid (GABA) release was also increased, which acts to attenuate the MnCl2 action to stimulate LHRH secretion. Although it is clear that manganese (Mn+2) can acutely induce LHRH secretion in adult males, we suggest that the additional action of MnCl2 to release GABA, a LHRH inhibitor, may ultimately contribute to suppressed reproductive function observed in adult animals following exposure to high chromic levels of Mn+2.


Assuntos
Cloretos/toxicidade , Dopamina/metabolismo , Disruptores Endócrinos/toxicidade , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Fatores Etários , Animais , Cloreto de Cálcio/farmacologia , Ácido Glutâmico/metabolismo , Hormônio Liberador de Gonadotropina/sangue , Hipotálamo/metabolismo , Masculino , Compostos de Manganês , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Prolactina/sangue , Prostaglandinas/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
16.
Neuroimmunomodulation ; 14(3-4): 188-92, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18073513

RESUMO

During marijuana and alcohol consumption as well as during inflammation the reproductive axis is inhibited, mainly through the inhibition of luteinizing hormone-releasing hormone release. In male rats, this inhibitory effect is mediated, at least in part, by the activation of hypothalamic cannabinoid type 1 receptors (CB1). During inflammation, this activation of the endocannabinoid system seems to be mediated by an increase in TNF-alpha production followed by anandamide augmentations, similarly the effect of intragastric administration of ethanol (3 g/kg) seems to be due to an increase in anandamide. On the other hand, a number of different actions mediated by the endocannabinoid system in various organs and tissues have been described. Both cannabinoid receptors, CB1 and CB2, are localized in the submandibular gland where they mediate the inhibitory effect of intrasubmandibular injections of the endocannabinoid anandamide (6 x 10(-5)M) on salivary secretion. Lipopolysaccharide (5 mg/kg/3 h) injected intraperitoneally and ethanol (3 g/kg/1 h) injected intragastrically inhibited the salivary secretion induced by the sialogogue metacholine; this inhibitory effect was blocked by CB1 and/or CB2 receptor antagonists. Similar to the hypothalamus, these effects seem to be mediated by increased anandamide. In summary, similar mechanisms mediate the inhibitory actions of endocannabinoids and cannabinoids in both hypothalamus and submandibular gland during drug consumption and inflammation.


Assuntos
Moduladores de Receptores de Canabinoides/fisiologia , Endocanabinoides , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Inflamação/tratamento farmacológico , Glândulas Salivares/efeitos dos fármacos , Fator de Necrose Tumoral alfa/fisiologia , Animais , Ácidos Araquidônicos/metabolismo , Canabinoides/farmacologia , Etanol/farmacologia , Humanos , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação/imunologia , Alcamidas Poli-Insaturadas/metabolismo , Receptores de Canabinoides/efeitos dos fármacos , Receptores de Canabinoides/imunologia , Glândulas Salivares/imunologia , Glândulas Salivares/metabolismo
17.
Toxicol Sci ; 97(1): 75-80, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17290048

RESUMO

Recently studies have demonstrated that low doses of (Mn(+2)) in the form of manganese chloride can stimulate specific puberty-related hormones and advance signs of pubertal development in immature female and male rats. In the present study, we used an in vitro system to evaluate the ability of 0, 50, 250, and 500 microM doses of Mn(+2) to stimulate luteinizing hormone-releasing hormone (LHRH) secretion and to assess the hypothalamic mechanism of this action in adult male Sprague-Dawley rats. We demonstrated that Mn(+2) at 500 microM, but not the lower doses, increased LHRH release, nitric oxide (NO) synthase (NOS) activity, and the content of cyclic cGMP in the medial basal hypothalamus. Inhibition of NOS with a competitive inhibitor (Nomega-nitro-L-arginine methyl ester hydrochloride) prevented the Mn-induced increase in LHRH release. Additionally, methylene blue and KT5823, specific inhibitors of guanylyl cyclase and protein kinase G (PKG), respectively, also blocked the stimulatory effect of Mn(+2) on LHRH release. These in vitro studies demonstrated that the hypothalamic mechanism of Mn(+2) action in adult males is by activation of the NOS/NO system, resulting in increases in cGMP and PKG and thus the secretion of LHRH from the nerve terminals. These results indicate Mn(+2) can cause LHRH release in adult males, and this action is discussed in relation to age, gender, as well as mechanistic and functional differences between adult and immature animals.


Assuntos
Cloretos/toxicidade , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores Etários , Animais , Carbazóis/farmacologia , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Feminino , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Hemoglobinas/metabolismo , Hipotálamo/metabolismo , Técnicas In Vitro , Indóis/farmacologia , Masculino , Compostos de Manganês , Azul de Metileno/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
18.
Ann N Y Acad Sci ; 1088: 1-11, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17192552

RESUMO

This review documents the remarkable progress over the last 50 years of our knowledge of the control of anterior pituitary hormone release and synthesis by a family of peptidic releasing and inhibiting hormones, synthesized in hypothalamic neurons and released into the hypophysial portal vessels. These vessels transport them to the anterior pituitary, where they stimulate release and synthesis of pituitary hormones or inhibit these processes. In general, there are at least two hypothalamic hormones for each pituitary hormone-vasopressin and corticotrophin-releasing hormone (CRH) for adrenocorticotropin hormone (ACTH) and growth hormone-releasing hormone (GHRH) and growth hormone-inhibiting hormone (GIH) for growth hormone (GH). Some of these hormones have extrapituitary action: for example, luteinizing hormone-releasing hormone (LHRH) stimulates mating behavior. High doses of LHRH have an inhibitory action on the growth of prostate cancer. Proinflammatory and anti-inflammatory cytokines act not only in the brain, but also on the pituitary and peripheral tissues. All of these transmitters are controlled by neuronal transmitters. We anticipate further rapid progress and clinical application of these transmitters and the discovery of new ones.


Assuntos
Endocrinologia/tendências , Neuroimunomodulação/fisiologia , Hormônios Liberadores de Hormônios Hipofisários/metabolismo , Hormônios Adeno-Hipofisários/metabolismo , Animais , Humanos , Hormônios Liberadores de Hormônios Hipofisários/imunologia , Hormônios Liberadores de Hormônios Hipofisários/farmacologia , Hormônios Adeno-Hipofisários/imunologia
19.
Neuroimmunomodulation ; 13(1): 19-27, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16691037

RESUMO

OBJECTIVE: In the present work, we evaluated the effect of exposing the submandibular glands (SMG) to radiation, studying different functional parameters such as salivary secretion, nitric oxide (NO) production, reactive oxygen species formation, prostaglandin (PGE) content and apoptosis. METHODS: We irradiated rats in the head and neck region with a single dose of gamma-ray radiation of 15 Gy. Two hours after radiation, we measured norepinephrine-induced salivary secretion. After that, the SMG were dissected, and in this tissue, we measured the activity of NO synthase (NOS), the PGE content, the amount of reactive oxygen species, apoptotic cells and mitochondrial inducible NOS (iNOS) expression. RESULTS: We found that radiation decreased salivary secretion when 10 and 30 microg/kg of norepinephrine was administered via the right femoral vein. We observed that iNOS activity was reduced and PGE content increased after radiation in SMG, indicating that NO and PGEs may participate in salivary secretion. The expression of mitochondrial NOS was increased after radiation leading to the formation of large amounts of NO that acts as a proapoptotic signal. In fact, we observed an augmentation in apoptotic cells. In this study, we also observed an increase in lipid peroxidation induced by radiation that may contribute to tissue damage. CONCLUSIONS: Our results indicate that radiation induced a decrease in salivary secretion and SMG iNOS activity, meanwhile the PGE content, the lipid peroxidation and apoptosis increased in the tissue. These modifications decrease salivary secretion.


Assuntos
Óxido Nítrico/efeitos da radiação , Prostaglandinas/efeitos da radiação , Radioterapia/efeitos adversos , Glândula Submandibular/metabolismo , Glândula Submandibular/efeitos da radiação , Xerostomia/fisiopatologia , Animais , Apoptose/fisiologia , Apoptose/efeitos da radiação , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Regulação para Baixo/efeitos da radiação , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Feminino , Neoplasias de Cabeça e Pescoço/radioterapia , Peroxidação de Lipídeos/fisiologia , Peroxidação de Lipídeos/efeitos da radiação , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos da radiação , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos da radiação , Prostaglandinas/metabolismo , Ratos , Saliva/metabolismo , Glândula Submandibular/fisiopatologia , Xerostomia/etiologia , Xerostomia/metabolismo
20.
Proc Natl Acad Sci U S A ; 101(32): 11891-6, 2004 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-15280536

RESUMO

Because Delta-9-tetrahydrocannabinol (THC) inhibited luteinizing hormone-releasing hormone (LHRH) in male rats, we hypothesized that the endocannabinoid, anandamide (AEA), would act similarly. AEA microinjected intracerebroventricularly (i.c.v.) decreased plasma luteinizing hormone (LH) at 30 min in comparison to values in controls (P < 0.001). The cannabinoid receptor 1 (CB1-r)-specific antagonist, [N-(piperidin-1-yl)-1-(2,4-dichlorophenyl)-5-(4-chlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] (AM251), produced a significant elevation in plasma LH (P < 0.01). AEA (10(-9) M) decreased LHRH release from medial basal hypothalami incubated in vitro. These results support the concept that endogenous AEA inhibits LHRH followed by decreased LH release in male rats. In ovariectomized (OVX) female rats, AEA i.c.v. also inhibited LH release, but in this case AM251 had an even greater inhibitory effect than AEA. In vitro, AEA had no effect on LHRH in OVX rats. It seems that endogenous AEA inhibits LHRH followed by decreased LH release in OVX rats but that AM251 has an inhibitory action in this case. In striking contrast, in OVX, estrogen-primed (OVX-E) rats, AEA i.c.v. instead of decreasing LH, increased its release. This effect was completely blocked by previous injection of AM251. When medial basal hypothalami of OVX-E rats were incubated, AEA increased LHRH release. The synthesized AEA was higher in OVX-E rats than in OVX and males, indicating that estrogen modifies endocannabinoid levels and effects. The results are interpreted to mean that sex steroids have profound effects to modify the response to AEA. It inhibits LHRH and consequently diminishes LH release in males and OVX females, but stimulates LHRH followed by increased LH release in OVX-E-primed rats.


Assuntos
Ácidos Araquidônicos/farmacologia , Estrogênios/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Animais , Endocanabinoides , Feminino , Hormônios Esteroides Gonadais/farmacologia , Hormônio Liberador de Gonadotropina/efeitos dos fármacos , Hormônio Luteinizante/sangue , Masculino , Ovariectomia , Alcamidas Poli-Insaturadas , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/fisiologia , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA