Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 4726, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633232

RESUMO

Ultrasound imaging is routinely used to guide prostate biopsies, yet delineation of tumors within the prostate gland is extremely challenging, even with microbubble (MB) contrast. A more effective ultrasound protocol is needed that can effectively localize malignancies for targeted biopsy or aid in patient selection and treatment planning for organ-sparing focal therapy. This study focused on evaluating the application of a novel nanobubble ultrasound contrast agent targeted to the prostate specific membrane antigen (PSMA-targeted NBs) in ultrasound imaging of prostate cancer (PCa) in vivo using a clinically relevant orthotopic tumor model in nude mice. Our results demonstrated that PSMA-targeted NBs had increased extravasation and retention in PSMA-expressing orthotopic mouse tumors. These processes are reflected in significantly different time intensity curve (TIC) and several kinetic parameters for targeted versus non-targeted NBs or LUMASON MBs. These, may in turn, lead to improved image-based detection and diagnosis of PCa in the future.


Assuntos
Antígenos de Superfície/análise , Glutamato Carboxipeptidase II/análise , Neoplasias da Próstata/diagnóstico por imagem , Animais , Meios de Contraste/análise , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Microbolhas , Imagem Molecular , Ultrassonografia
2.
Ultrasound Med Biol ; 45(9): 2502-2514, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31248638

RESUMO

Our group recently presented a simple strategy using the non-ionic surfactant, Pluronic, as a size control excipient to produce nanobubbles in the 100-nm range, which exhibited stability and echogenicity on par with clinically available microbubbles. The objective of the present study was to evaluate biodistribution and extravasation of the Pluronic-stabilized lipid nanobubbles compared with microbubbles in 2 experimental tumor models in mice. Standard lipid-stabilized perfluoropropane bubbles (Pluronic L10) and lipid-stabilized perfluoropropane nanobubbles were intravenously injected into mice bearing either an orthotopic mouse breast cancer (BC4 T1) or subcutaneous mouse ovarian cancer (OVCAR-3) through the tail vein to perform perfusion dynamic studies. No significant differences between the nanobubble and microbubble groups were observed in the peak enhancement of the 3 tested regions (tumor, liver and kidney). However, the decay rates of nanobubble in the tumor and kidney of BC4 T1-bearing mice, as well as in mice with OVRCAR-3 tumors were significantly slower than those of the microbubble. To quantify extravasation, fluorescently labeled bubbles were intravenously injected into mice bearing the same tumors. Histologic analysis showed that nanobubbles were retained in tumor tissue to a greater extent compared with microbubbles in both tumor models at the 3-h time point. Our results demonstrate unique nanobubble behavior compared with microbubbles and support augmented application of these agents in ultrasound molecular imaging and drug delivery beyond the tumor vasculature.


Assuntos
Meios de Contraste/química , Neoplasias Experimentais/diagnóstico por imagem , Poloxâmero/química , Ultrassonografia/métodos , Animais , Meios de Contraste/farmacocinética , Feminino , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Camundongos , Camundongos Nus , Microbolhas , Neoplasias Ovarianas/diagnóstico por imagem , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA