Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biology (Basel) ; 12(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998036

RESUMO

Polyphenols have gained increasing attention for their therapeutic potential, particularly in conditions like cancer, due to their established antioxidant and anti-inflammatory properties. Recent research highlights their ability to bind to transition metals, such as copper. This is particularly noteworthy given the key role of copper both in the initiation and progression of cancer. Copper can modulate the activity of kinases required for the epithelial-mesenchymal transition (EMT), a process fundamental to tumor cell dissemination. We have previously demonstrated the copper-binding capacity of oleuropein, a secoiridoid found in Olea europaea. In the present study, we investigated the effect of hydroxytyrosol, the primary oleuropein metabolite, on the metastatic potential of three triple-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468, and SUM159). We found that hydroxytyrosol modulated the intracellular copper levels, influencing both the epithelial and mesenchymal markers, by downregulating copper-dependent AKT phosphorylation, a member of the EMT signaling cascade, through Western blot, RT-qPCR, and immunofluorescence. Indeed, by optical spectra, EPR, and in silico approaches, we found that hydroxytyrosol formed a complex with copper, acting as a chelating agent, thus regulating its homeostasis and affecting the copper-dependent signaling cascades. While our results bring to light the copper-chelating properties of hydroxytyrosol capable of countering tumor progression, they also provide further confirmation of the key role of copper in promoting the aggressiveness of triple-negative breast cancer cells.

2.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511550

RESUMO

The most promising method for monitoring patients with minimal morbidity is the detection of circulating melanoma cells (CMCs). We have shown that CD45-CD146+ABCB5+ CMCs identify a rare primitive stem/mesenchymal CMCs population associated with disease progression. The epithelial-to-mesenchymal transition (EMT) confers cancer cells a hybrid epithelial/mesenchymal phenotype promoting metastatization. Thus, we investigated the potential clinical value of the EMT gene signature of these primitive CMCs. A reliable quantitative real-time polymerase chain reaction (qRT-PCR) protocol was settled up using tumor cell lines RNA dilutions. Afterwards, immune-magnetically isolated CMCs from advanced melanoma patients, at onset and at the first checkpoint (following immune or targeted therapy), were tested for the level of EMT hallmarks and EMT transcription factor genes. Despite the small cohort of patients, we obtained promising results. Indeed, we observed a deep gene rewiring of the EMT investigated genes: in particular we found that the EMT gene signature of isolated CMCs correlated with patients' clinical outcomes. In conclusion, We established a reliable qRT-PCR protocol with high sensitivity and specificity to characterize the gene expression of isolated CMCs. To our knowledge, this is the first evidence demonstrating the impact of immune or targeted therapies on EMT hallmark gene expressions in CMCs from advanced melanoma patients.


Assuntos
Melanoma , Células Neoplásicas Circulantes , Humanos , Relevância Clínica , Células Neoplásicas Circulantes/patologia , Melanoma/genética , Melanoma/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética
3.
Cell Oncol (Dordr) ; 46(1): 93-115, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36454513

RESUMO

BACKGROUND: The main mechanism underlying cancer dissemination is the epithelial to mesenchymal transition (EMT). This process is orchestrated by cytokines like TGFß, involving "non-canonical" AKT- or STAT3-driven pathways. Recently, the alteration of copper homeostasis seems involved in the onset and progression of cancer. METHODS: We expose different breast cancer cell lines, including two triple negative (TNBC) ones, an HER2 enriched and one cell line representative of the Luminal A molecular subtype, to short- or long-term copper-chelation by triethylenetetramine (TRIEN). We analyse changes in the expression of EMT markers (E-cadherin, fibronectin, vimentin and αSMA), in the levels and activity of extracellular matrix components (LOXL2, fibronectin and MMP2/9) and of copper homeostasis markers by Western blot analyses, immunofluorescence, enzyme activity assays and RT-qPCR. Boyden Chamber and wound healing assays revealed the impact of copper chelation on cell migration. Additionally, we explored whether perturbation of copper homeostasis affects EMT prompted by TGFß. Metabolomic and lipidomic analyses were applied to search the effects of copper chelation on the metabolism of breast cancer cells. Finally, bioinformatics analysis of data on breast cancer patients obtained from different databases was employed to correlate changes in kinases and copper markers with patients' survival. RESULTS: Remarkably, only HER2 negative breast cancer cells differently responded to short- or long-term exposure to TRIEN, initially becoming more aggressive but, upon prolonged exposure, retrieving epithelial features, reducing their invasiveness. This phenomenon may be related to the different impact of the short and prolonged activation of the AKT kinase and to the repression of STAT3 signalling. Bioinformatics analyses confirmed the positive correlation of breast cancer patients' survival with AKT activation and up-regulation of CCS. Eventually, metabolomics studies demonstrate a prevalence of glycolysis over mitochondrial energetic metabolism and of lipidome changes in TNBC cells upon TRIEN treatment. CONCLUSIONS: We provide evidence of a pivotal role of copper in AKT-driven EMT activation, acting independently of HER2 in TNBC cells and via a profound change in their metabolism. Our results support the use of copper-chelators as an adjuvant therapeutic strategy for TNBC.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Fibronectinas/uso terapêutico , Cobre/farmacologia , Cobre/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Disponibilidade Biológica , Trientina/farmacologia , Trientina/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular , Fator de Crescimento Transformador beta/metabolismo , Aminoácido Oxirredutases/metabolismo , Aminoácido Oxirredutases/farmacologia , Aminoácido Oxirredutases/uso terapêutico
4.
Biomolecules ; 12(10)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291728

RESUMO

In recent years, copper function has been expanded beyond its consolidated role as a cofactor of enzyme catalysis. Recent papers have demonstrated a new dynamic role for copper in the regulation of cell signaling pathways through direct interaction with protein kinases, modulating their activity. The activation of these pathways is exacerbated in cancer cells to sustain the different steps of tumor growth and dissemination. This review will focus on a novel proposed role for the transition metal copper as a regulator of cell signaling pathways through direct interaction with known protein kinases, which exhibit binding domains for this metal. Activation of these pathways in cancer cells supports both tumor growth and dissemination. In addition to the description of the results recently reported in the literature on the subject, relevance will be given to the possibility of controlling the cellular levels of copper and its homeostatic regulators. Overall, these findings may be of central relevance in order to propose copper and its homeostatic regulators as possible targets for novel therapies, which may act synergistically to those already existing to control cancer growth and dissemination.


Assuntos
Cobre , Neoplasias , Humanos , Cobre/química , Neoplasias/metabolismo , Transdução de Sinais , Homeostase , Proteínas Quinases/metabolismo
5.
J Inorg Biochem ; 226: 111634, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740035

RESUMO

Copper homeostasis is strictly regulated by protein transporters and chaperones, to allow its correct distribution and avoid uncontrolled redox reactions. Several studies address copper as involved in cancer development and spreading (epithelial to mesenchymal transition, angiogenesis). However, being endogenous and displaying a tremendous potential to generate free radicals, copper is a perfect candidate, once opportunely complexed, to be used as a drug in cancer therapy with low adverse effects. Copper ions can be modulated by the organic counterpart, after complexed to their metalcore, either in redox potential or geometry and consequently reactivity. During the last four decades, many copper complexes were studied regarding their reactivity toward cancer cells, and many of them could be a drug choice for phase II and III in cancer therapy. Also, there is promising evidence of using 64Cu in nanoparticles as radiopharmaceuticals for both positron emission tomography (PET) imaging and treatment of hypoxic tumors. However, few compounds have gone beyond testing in animal models, and none of them got the status of a drug for cancer chemotherapy. The main challenge is their solubility in physiological buffers and their different and non-predictable mechanism of action. Moreover, it is difficult to rationalize a structure-based activity for drug design and delivery. In this review, we describe the role of copper in cancer, the effects of copper-complexes on tumor cell death mechanisms, and point to the new copper complexes applicable as drugs, suggesting that they may represent at least one component of a multi-action combination in cancer therapy.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cobre , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias , Compostos Radiofarmacêuticos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Complexos de Coordenação/química , Complexos de Coordenação/uso terapêutico , Cobre/química , Cobre/uso terapêutico , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico
6.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613691

RESUMO

Cancer cells may acquire resistance to stress signals and reprogram metabolism to meet the energetic demands to support their high proliferation rate and avoid death. Hence, targeting nutrient dependencies of cancer cells has been suggested as a promising anti-cancer strategy. We explored the possibility of killing breast cancer (BC) cells by modifying nutrient availability. We used in vitro models of BC (MCF7 and MDA-MB-231) that were maintained with a low amount of sulfur amino acids (SAAs) and a high amount of oxidizable polyunsatured fatty acids (PUFAs). Treatment with anti-apoptotic, anti-ferroptotic and antioxidant drugs were used to determine the modality of cell death. We reproduced these conditions in vivo by feeding BC-bearing mice with a diet poor in proteins and SAAs and rich in PUFAs (LSAA/HPUFA). Western blot analysis, qPCR and histological analyses were used to assess the anti-cancer effects and the molecular pathways involved. We found that BC cells underwent oxidative damage to DNA and proteins and both apoptosis and ferroptosis were induced. Along with caspases-mediated PARP1 cleavage, we found a lowering of the GSH-GPX4 system and an increase of lipid peroxides. A LSAA/HPUFA diet reduced tumor mass and its vascularization and immune cell infiltration, and induced apoptosis and ferroptotic hallmarks. Furthermore, mitochondrial mass was found to be increased, and the buffering of mitochondrial reactive oxygen species limited GPX4 reduction and DNA damage. Our results suggest that administration of custom diets, targeting the dependency of cancer cells on certain nutrients, can represent a promising complementary option for anti-cancer therapy.


Assuntos
Apoptose , Neoplasias da Mama , Dieta , Animais , Camundongos , Morte Celular , Ácidos Graxos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Peroxidação de Lipídeos , Peróxidos Lipídicos , Células MCF-7 , Células MDA-MB-231 , Humanos , Neoplasias da Mama/patologia
7.
J Alzheimers Dis ; 78(4): 1373-1380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33185611

RESUMO

Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative syndrome. Defects of copper (Cu) and iron (Fe) homeostasis are involved in the development of several neurodegenerative diseases and their homeostasis is interconnected by the Cu-protein ceruloplasmin (Cp), responsible for Fe oxidative state. In this study we assessed Fe, transferrin (Trf), ferritin, Cp specific activity (eCp/iCp), Cp/Trf ratio, and Trf saturation in 60 FTLD patients and 43 healthy controls, and discussed the results in relation to Cu homeostasis. The significant decrease of the eCp/iCp in the FTLD patients supports the involvement of Fe imbalance in the onset and progression of FTLD.


Assuntos
Ceruloplasmina/metabolismo , Ferritinas/sangue , Degeneração Lobar Frontotemporal/sangue , Ferro/sangue , Transferrina/metabolismo , Idoso , Afasia Primária Progressiva/sangue , Afasia Primária Progressiva/metabolismo , Estudos de Casos e Controles , Feminino , Demência Frontotemporal/sangue , Demência Frontotemporal/metabolismo , Humanos , Ferro/metabolismo , Masculino , Pessoa de Meia-Idade
8.
Biochem Pharmacol ; 178: 114060, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32473836

RESUMO

The 7-nitrobenzo[c][1,2,5]oxadiazole (NBD) derivative NBDHEX (compound 1) and its analogue MC3181 (compound 2) have been found to be potent inhibitors of tumor cell growth in vitro and therapeutically active and safe in mice bearing human melanoma xenografts. To enhance the aqueous solubility of these compounds, we synthesized the hemisuccinate of 1 (compound 3) and the phosphate monoesters of 1 and 2 (compound 4 and 5, respectively). These novel NBD derivatives displayed a solubility in the conventional phosphate-buffered saline up to 150-fold higher than that of 1, and up to 4-fold higher than that of 2. Notably, solubility of phosphates 4 and 5 in a potassium phosphate buffer at pH 7.4, was up to 500-fold higher than that of 1, and ~10-fold higher than that of 2. Compounds 3-5 retained high cytotoxicity towards cultured human melanoma and osteosarcoma cells and were cleaved in vitro by both human and murine hydrolases, thus releasing the corresponding parent compound (i.e., 1 or 2). Interestingly, esters 3-5 displayed high inhibitory activity towards the glutathione transferase (GST) isoform GSTP1-1 and showed a reactivity towards reduced glutathione comparable to that of the respective parent compound. Finally, both 4 and 5 were safe and effective when administered intravenously or orally as an aqueous solution to mice xenografted with A375 human melanoma tumors. Collectively, these results and the previously observed synergistic interaction between 1 and 2 and various approved anticancer drugs, suggest the possible utility of phosphates 4 and 5 as single agents and in combination regimens in cancers with unmet medical need, including melanoma.


Assuntos
4-Cloro-7-nitrobenzofurazano/metabolismo , Antineoplásicos/metabolismo , Glutationa S-Transferase pi/antagonistas & inibidores , Glutationa S-Transferase pi/metabolismo , Neoplasias/metabolismo , Água/metabolismo , 4-Cloro-7-nitrobenzofurazano/química , 4-Cloro-7-nitrobenzofurazano/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Ésteres/química , Ésteres/metabolismo , Feminino , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Solubilidade , Água/química , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
J Trace Elem Med Biol ; 55: 204-213, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31345360

RESUMO

BACKGROUND: Copper was reported to be involved in the onset and progression of cancer. Proteins in charge of copper uptake and distribution, as well as cuproenzymes, are altered in cancer. More recently, proteins involved in signaling cascades, regulating cell proliferation, and anti-apoptotic protein factors were found to interact with copper. Therefore, therapeutic strategies using copper complexing molecules have been proposed for cancer therapy and used in clinical trials. OBJECTIVES: This review will focus on novel findings about the involvement of copper and cupro-proteins in cancer dissemination process, epithelium to mesenchymal transition and vascularization. Particularly, implication of well-established (e.g. lysil oxidase) or newly identified copper-binding proteins (e.g. MEMO1), as well as their interplay, will be discussed. Moreover, we will describe recently synthesized copper complexes, including plant-derived ones, and their efficacy in contrasting cancer development. CONCLUSIONS: The research on the involvement of copper in cancer is still an open field. Further investigation is required to unveil the mechanisms involved in copper delivery to the novel copper-binding proteins, which may identify other possible gene and protein targets for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Cobre/metabolismo , Homeostase/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Proteínas de Transporte/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias/patologia
10.
J Enzyme Inhib Med Chem ; 34(1): 1131-1139, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31169043

RESUMO

The antitumor agent 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (1) is a potent inhibitor of GSTP1-1, a glutathione S-transferase capable of inhibiting apoptosis by binding to JNK1 and TRAF2. We recently demonstrated that, unlike its parent compound, the benzoyl ester of 1 (compound 3) exhibits negligible reactivity towards GSH, and has a different mode of interaction with GSTP1-1. Unfortunately, 3 is susceptible to rapid metabolic hydrolysis. In an effort to improve the metabolic stability of 3, its ester group has been replaced by an amide, leading to N-(6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexyl)benzamide (4). Unlike 3, compound 4 was stable to human liver microsomal carboxylesterases, but retained the ability to disrupt the interaction between GSTP1-1 and TRAF2 regardless of GSH levels. Moreover, 4 exhibited both a higher stability in the presence of GSH and a greater cytotoxicity towards cultured A375 melanoma cells, in comparison with 1 and its analog 2. These findings suggest that 4 deserves further preclinical testing.


Assuntos
4-Cloro-7-nitrobenzofurazano/farmacologia , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , 4-Cloro-7-nitrobenzofurazano/síntese química , 4-Cloro-7-nitrobenzofurazano/química , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Glutationa S-Transferase pi/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
11.
Proc Natl Acad Sci U S A ; 116(28): 13943-13951, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221747

RESUMO

Cisplatin [cis-diamminedichloroplatinum(II) (cis-DDP)] is one of the most successful anticancer agents effective against a wide range of solid tumors. However, its use is restricted by side effects and/or by intrinsic or acquired drug resistance. Here, we probed the role of glutathione transferase (GST) P1-1, an antiapoptotic protein often overexpressed in drug-resistant tumors, as a cis-DDP-binding protein. Our results show that cis-DDP is not a substrate for the glutathione (GSH) transferase activity of GST P1-1. Instead, GST P1-1 sequesters and inactivates cisplatin with the aid of 2 solvent-accessible cysteines, resulting in protein subunits cross-linking, while maintaining its GSH-conjugation activity. Furthermore, it is well known that GST P1-1 binding to the c-Jun N-terminal kinase (JNK) inhibits JNK phosphorylation, which is required for downstream apoptosis signaling. Thus, in turn, GST P1-1 overexpression and Pt-induced subunit cross-linking could modulate JNK apoptotic signaling, further confirming the role of GST P1-1 as an antiapoptotic protein.


Assuntos
Cisplatino/química , Glutationa S-Transferase pi/química , Proteínas Quinases JNK Ativadas por Mitógeno/química , Neoplasias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutationa/química , Glutationa S-Transferase pi/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Neoplasias/genética , Fosforilação , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Transdução de Sinais/efeitos dos fármacos
12.
Cell Death Dis ; 8(11): e3169, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144507

RESUMO

The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level. Furthermore, meta-analysis of the TCGA melanoma data revealed that high levels of FMRP expression correlate significantly with metastatic tumor tissues, risk of relapsing and disease-free survival. Reduction of FMRP in metastatic melanoma cell lines impinges on cell migration, invasion and adhesion. Next-generation sequencing in human melanoma cells revealed that FMRP regulates a large number of mRNAs involved in relevant processes of melanoma progression. Our findings suggest an association between FMRP levels and the invasive phenotype in melanoma and might open new avenues towards the discovery of novel therapeutic targets.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Invasividade Neoplásica , Transfecção
13.
Oncotarget ; 8(9): 15520-15538, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28107182

RESUMO

The novel nitrobenzoxadiazole (NBD) derivative MC3181 is endowed with remarkable therapeutic activity in mice bearing both sensitive and vemurafenib-resistant human melanoma xenografts. Here, we report that subtoxic concentrations of this compound significantly reduced invasiveness of BRAF-V600D mutated WM115 and WM266.4 melanoma cell lines derived from the primary lesion and related skin metastasis of the same patient, respectively. The strong antimetastatic activity of MC3181 was observed in both 2D monolayer cultures and 3D multicellular tumor spheroids, and confirmed in vivo by the significant decrease in the number of B16-F10 melanoma lung metastases in drug-treated mice. Our data also show that MC3181 affects the lactate production in the high glycolytic WM266.4 cell line. To unveil the MC3181 mechanism of action, we analyzed the ability of MC3181 to affect the degree of activation of different MAPK pathways, as well as the expression/activity levels of several proteins involved in angiogenesis, invasion, and survival (i.e. AP2, MCAM/MUC18, N-cadherin, VEGF and MMP-2). Our data disclosed both a decrease of the phospho-active form of JNK and an increased expression of the transcription factor AP2, events that occur in the very early phase of drug treatment and may be responsible of the antimetastatic effects of MC3181.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Neoplasias Pulmonares/prevenção & controle , Melanoma Experimental/tratamento farmacológico , Nitrobenzenos/farmacologia , Oxidiazóis/farmacologia , Animais , Antineoplásicos/química , Antígeno CD146/genética , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Invasividade Neoplásica , Nitrobenzenos/química , Oxidiazóis/química , Proteínas Proto-Oncogênicas B-raf/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
14.
J Enzyme Inhib Med Chem ; 32(1): 240-247, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28097896

RESUMO

CONTEXT: The nitrobezoxadiazole derivative NBDHEX is a potent inhibitor of glutathione transferase P1-1 (GSTP1-1) endowed with outstanding anticancer activity in different tumor models. OBJECTIVE: To characterize by in vitro biochemical and in silico studies the NBDHEX analogues named MC2752 and MC2753. MATERIALS AND METHODS: Synthesis of MC2752 and MC2753, biochemical assays and in silico docking and normal-mode analyses. RESULTS: The presence of a hydrophobic moiety in the side chain of MC2753 confers unique features to this molecule. Unlike its parent drug NBDHEX, MC2753 does not require GSH to trigger the dissociation of the complex between GSTP1-1 and TRAF2, and displays high stability towards the nucleophilic attack of the tripeptide under physiological conditions. DISCUSSION AND CONCLUSION: MC2753 may represent a lead compound for the development of novel GSTP1-1 inhibitors not affected in their anticancer action by fluctuations of cellular GSH levels, and characterized by an increased half-life in vivo.


Assuntos
Inibidores Enzimáticos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , Oxazóis/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Ensaio de Imunoadsorção Enzimática , Humanos , Modelos Moleculares , Oxazóis/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
15.
J Transl Med ; 14: 37, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26847645

RESUMO

BACKGROUND: Nitrobenzoxadiazole derivatives (NBDs), including NBDHEX and the recently developed MC3181, are promising anticancer agents able to target glutathione transferase and inhibit both its catalytic activity and ability to sequester TNF-receptor associated factor 2 (TRAF2) and c-Jun N-terminal kinase (JNK). NBDs have been shown to impair the growth and survival of a broad-spectrum of tumor types, in vitro and in vivo. Herein, we evaluated the effects of the new compound MC3181 on U-2OS osteosarcoma cells and investigated the impact of both NBDHEX and MC3181 on autophagy. METHODS: Cell viability was evaluated by sulforhodamine B assay. The dissociation of the TRAF2-GSTP1-1 complex was detected by proximity ligation assay, while the phospho-activation of JNK was assessed by western blotting. The effects of NBDs on autophagy were evaluated by GFP-LC3 puncta formation, western blotting for LC3-II and p62, and LC3 turnover assay in the presence of bafilomycin A1. The role of JNK in the reduction of autophagic flux caused by NBDs was investigated using JNK1 shRNA-transfected cells. Fluorogenic caspase activity assay and flow cytometric analysis of DNA content were used to determine the cytotoxic effects of NBDs on JNK1-silenced cells. RESULTS: Similar to NBDHEX, MC3181 reduced viability and activated TRAF2/JNK signaling in U-2OS cells. Moreover, NBDs induced the accumulation of autophagic vesicles and LC3-II while reducing both basal and nutritional stress-induced autophagic flux. Furthermore, increased levels of both LC3-II and the autophagy selective substrate p62 were observed in different tumor cell lines treated with NBDs, the concurrent increase of these markers being consistent with an impairment of autophagosome clearance. Autophagy inhibition by NBDs required JNK activity: NBDs caused autophagy inhibition and caspase-3 activation in JNK-positive U-2OS, but no autophagic flux inhibition or caspase-3 activation in JNK-silenced cells. CONCLUSIONS: Our demonstration that NBDs can act as late-phase autophagy inhibitors opens new opportunities to fully exploit their therapeutic potential. This may not rely solely on their effectiveness in inducing cell cycle arrest and apoptosis, but also on their ability to weaken the capacity of tumor cells to endure stress conditions via autophagy. In addition, this study provides evidence that JNK can participate in impairing autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Oxidiazóis/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Proteínas Associadas aos Microtúbulos/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/metabolismo
16.
J Enzyme Inhib Med Chem ; 31(6): 924-30, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26329912

RESUMO

CONTEXT: The inhibition of glutathione S-transferase P1-1 (GSTP1-1) is a sound strategy to overcome drug resistance in oncology practice. OBJECTIVE: The nitrobenzoxadiazolyl (NBD) S-conjugate of glutathione and the corresponding γ-oxa-glutamyl isostere (compounds 1 and 5, respectively) have been disclosed as GST inhibitors. The rationale of their design is discussed in juxtaposition to non-peptide NBD thioethers. MATERIALS AND METHODS: Synthesis of derivatives 1 and 5 and in vitro evaluation on human GSTP1-1 and M2-2 are reported. RESULTS: Conjugates 1 and 5 were found to be low micromolar inhibitors of both isoforms. Furthermore, they display a threefold reduction in selectivity for GSTM2-2 over the P1-1 isozyme in comparison with the potent non-peptide inhibitor nitrobenzoxadiazolyl-thiohexanol (NBDHEX). DISCUSSION AND CONCLUSIONS: Spectroscopic data are congruent with the formation of a stable sigma-complex between GSH and the inhibitors in the protein active site. Conjugate 5 is suitable for in vivo modulation of GST activity in cancer treatment.


Assuntos
4-Cloro-7-nitrobenzofurazano/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , Glutationa Transferase/antagonistas & inibidores , Glutationa/farmacologia , 4-Cloro-7-nitrobenzofurazano/síntese química , 4-Cloro-7-nitrobenzofurazano/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Glutationa/química , Glutationa S-Transferase pi/metabolismo , Glutationa Transferase/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
17.
Biochem Pharmacol ; 95(1): 16-27, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25795251

RESUMO

Recovery of mitogen activated protein kinase (MAPK) or activation of alternative pathways, such as the PI3K/AKT/mTOR, are involved in acquired resistance to BRAF inhibitors which represent the first-line treatment of BRAF-mutated metastatic melanoma. We recently demonstrated that 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (NBDHEX) and its water soluble analog 2-(2-(2-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)ethoxy)ethoxy)ethanol (MC3181) trigger apoptosis in BRAF V600E mutated melanoma cells through activation of the MAPK c-Jun N-terminal kinase (JNK). Herein, we investigated whether NBDHEX and MC3181 might exert antitumor activity against BRAF V600E mutated human melanoma cells rendered resistant to the BRAF inhibitor vemurafenib. To this aim we generated a subline of A375 melanoma resistant in vitro and in vivo to vemurafenib (A375-VR8) and characterized by NRAS G13R mutation, high basal levels of CRAF protein and phospho-activation of AKT. In these cells ERK phosphorylation was not significantly down-modulated by vemurafenib concentrations capable of abrogating ERK phosphorylation in sensitive A375 cells. Both NBDHEX and MC3181 induced marked antiproliferative and apoptotic effects in A375-VR8 cells and, at equitoxic concentrations, caused a strong phosphorylation of JNK, p38, and of the downstream mediators of apoptosis ATF2 and p53. Drug treatment further increased ERK phosphorylation, which was required for the cellular response to the NBD derivatives, as apoptosis was antagonized by the ERK inhibitor FR180204. Finally, in vivo administration of MC3181 provoked JNK activation at the tumor site and markedly reduced A375-VR8 growth. These evidences strongly suggest that the activation of multiple pro-apoptotic MAPK pathways by MC3181 might represent a new strategy for the treatment of melanoma resistant to BRAF inhibitors.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Indóis/uso terapêutico , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , Camundongos Nus , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/metabolismo , Solubilidade , Sulfonamidas/uso terapêutico , Vemurafenib , Água/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
18.
Oncotarget ; 6(6): 4126-43, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25595904

RESUMO

We designed and synthesized two novel nitrobenzoxadiazole (NBD) analogues of the anticancer agent 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (NBDHEX). The new compounds, namely MC3165 and MC3181, bear one and two oxygen atoms within the hydroxy-containing alkyl chain at the C4 position of the NBD scaffold, respectively. This insertion did not alter the chemical reactivity with reduced glutathione, while it conferred a remarkable increase in water solubility. MC3181 was more selective than NBDHEX towards the target protein, glutathione transferase P1-1, and highly effective in vitro against a panel of human melanoma cell lines, with IC50 in the submicromolar-low micromolar range. Interestingly, the cellular response to MC3181 was cell-type-specific; the compound triggered a JNK-dependent apoptosis in the BRAF-V600E-mutated A375 cells, while it induced morphological changes together with an increase in melanogenesis in BRAF wild-type SK23-MEL cells. MC3181 exhibited a remarkable therapeutic activity against BRAF-V600E-mutant xenografts, both after intravenous and oral administration. Outstandingly, no treatment-related signs of toxicity were observed both in healthy and tumor-bearing mice after single and repeated administrations. Taken together, these results indicate that MC3181 may represent a potential novel therapeutic opportunity for BRAF-mutated human melanoma, while being safe and water-soluble and thus overcoming all the critical aspects of NBDHEX in vivo.


Assuntos
Inibidores Enzimáticos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , Melanoma/tratamento farmacológico , Oxidiazóis/farmacologia , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Feminino , Humanos , Melanoma/enzimologia , Melanoma/patologia , Camundongos , Oxidiazóis/química , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Eur J Med Chem ; 89: 156-71, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25462236

RESUMO

The 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (NBDHEX, 1), a "suicide inhibitor" of the glutathione-S-transferase GSTP1-1, showed pro-apoptotic properties in tumor cells, but in vivo studies were limited by poor bioavailability and high affinity towards GSTM2-2, expressed in many non-cancerous tissues. Here we describe the synthesis and biological characterization of new 1 analogs (2-40), in which the hydroxyhexyl portion at the C4-sulfur atom has been replaced with phenyl-containing moieties as well as substituted alkyl chains. Some of the new compounds displayed 10-100 times increased water-solubility (8, 11, 17, 26-28, 34, 35), and most of them showed higher GSTP1-1 selectivity (2-20, 23-26, 31-33, 35) than 1. The presence of a phenyl ring with polar substituents is in general associated, with some exceptions (23, 24) to low cytotoxicity in osteosarcoma U-2OS cells. Differently, some alkyl derivatives possess cytotoxicity comparable (26, 34, 35) or higher (30, 32) than 1. Among the novel compounds, selected ones (26, 27, 34, and 35) deserve further investigation for their anticancer potential.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , Imidazóis/farmacologia , Naftalenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glutationa S-Transferase pi/metabolismo , Humanos , Imidazóis/síntese química , Imidazóis/química , Modelos Moleculares , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Relação Estrutura-Atividade
20.
Cancer Sci ; 104(2): 223-30, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23121163

RESUMO

Malignant pleural mesothelioma is a poorly responsive tumor known to overexpress the phase II detoxification enzyme glutathione-S-transferase, which catalyzes the conjugation between glutathione and platinum(II)-containing drugs. Therefore, we evaluated the effect of the strong glutathione S-transferase inhibitor NBDHEX on human mesothelioma cell lines (MSTO-211H, MPP89, MM-B1 and Mero 48a) featuring the most common mesothelioma phenotypes: epithelioid and biphasic. Even though a different response to NBDHEX was observed, the molecule was very effective on all cell lines tested, triggering a sustained activation of both JNK and p38, followed by caspase activation and apoptosis. NBDHEX also caused severe oxidative stress in the MPP89 cells and, to a lesser extent, in the MMB1 cells, while it did not cause a significant redox imbalance in the other cell lines. The efficacy of the drug was found to be comparable or even higher than that of cisplatin. Moreover, it showed synergistic or additive effects when used in combination with cisplatin. In conclusion, NBDHEX was effective on mesothelioma cell lines, with IC(50) values in the low micromolar range (IC(50) between 1 and 4 µM). These findings indicate that NBDHEX, alone or in combination with cisplatin, is a promising new strategy for treating this rare and aggressive malignancy.


Assuntos
Glutationa S-Transferase pi/antagonistas & inibidores , Mesotelioma/tratamento farmacológico , Mesotelioma/enzimologia , Oxidiazóis/farmacologia , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/enzimologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Sinergismo Farmacológico , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa S-Transferase pi/metabolismo , Humanos , Concentração Inibidora 50 , MAP Quinase Quinase 4/metabolismo , Células MCF-7 , Mesotelioma/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular , Oxidiazóis/administração & dosagem , Oxidiazóis/efeitos adversos , Neoplasias Pleurais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA