Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069036

RESUMO

The DNA origami method has revolutionized the field of DNA nanotechnology since its introduction. These nanostructures, with their customizable shape and size, addressability, nontoxicity, and capacity to carry bioactive molecules, are promising vehicles for therapeutic delivery. Different approaches have been developed for manipulating and folding DNA origami, resulting in compact lattice-based and wireframe designs. Platinum-based complexes, such as cisplatin and phenanthriplatin, have gained attention for their potential in cancer and antiviral treatments. Phenanthriplatin, in particular, has shown significant antitumor properties by binding to DNA at a single site and inhibiting transcription. The present work aims to study wireframe DNA origami nanostructures as possible carriers for platinum compounds in cancer therapy, employing both cisplatin and phenanthriplatin as model compounds. This research explores the assembly, platinum loading capacity, stability, and modulation of cytotoxicity in cancer cell lines. The findings indicate that nanomolar quantities of the ball-like origami nanostructure, obtained in the presence of phenanthriplatin and therefore loaded with that specific drug, reduced cell viability in MCF-7 (cisplatin-resistant breast adenocarcinoma cell line) to 33%, while being ineffective on the other tested cancer cell lines. The overall results provide valuable insights into using wireframe DNA origami as a highly stable possible carrier of Pt species for very long time-release purposes.


Assuntos
Neoplasias da Mama , Nanoestruturas , Humanos , Feminino , Cisplatino/farmacologia , Platina/farmacologia , Preparações Farmacêuticas , DNA/química , Nanoestruturas/química , Conformação de Ácido Nucleico
2.
Bioinorg Chem Appl ; 2023: 5564624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727647

RESUMO

Pancreatic cancer is one of the most lethal malignancies with an increasing incidence and a high mortality rate, due to its rapid progression, invasiveness, and resistance to anticancer therapies. In this work, we evaluated the antiproliferative and antimigratory activities of the two organometallic compounds, [Pt(η1-C2H4-OMe)(DMSO)(phen)]Cl (1) and [Pt(η1-C2H4-OEt)(DMSO)(phen)]Cl (2), on three human pancreatic ductal adenocarcinoma cell lines with different sensitivity to cisplatin (Mia PaCa-2, PANC-1, and YAPC). The two cationic analogues showed superimposable antiproliferative effects on the tested cells, without significant differences depending on alkyl chain length (Me or Et). On the other hand, they demonstrated to be more effective than cisplatin, especially on YAPC cancer cells. For the interesting cytotoxic activity observed on YAPC, further biological assays were performed, on this cancer cell line, to evaluate the apoptotic and antimetastatic properties of the considered platinum compounds (1 and 2). The cytotoxicity of 1 and 2 compounds appeared to be related to their intracellular accumulation, which was much faster than that of cisplatin. Both 1 and 2 compounds significantly induced apoptosis and cell cycle arrest, with a high accumulation of sub-G1 phase cells, compared to cisplatin. Moreover, phenanthroline-containing complexes caused a rapid loss of mitochondria membrane potential, ΔΨM, if compared to cisplatin, probably due to their cationic and lipophilic properties. On 3D tumor spheroids, 1 and 2 significantly reduced migrated area more than cisplatin, confirming an antimetastatic ability.

3.
Pharmaceutics ; 15(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986802

RESUMO

Nucleoside analogues (NAs) are a family of compounds which include a variety of purine and pyrimidine derivatives, widely used as anticancer and antiviral agents. For their ability to compete with physiological nucleosides, NAs act as antimetabolites exerting their activity by interfering with the synthesis of nucleic acids. Much progress in the comprehension of their molecular mechanisms has been made, including providing new strategies for potentiating anticancer/antiviral activity. Among these strategies, new platinum-NAs showing a good potential to improve the therapeutic indices of NAs have been synthesized and studied. This short review aims to describe the properties and future perspectives of platinum-NAs, proposing these complexes as a new class of antimetabolites.

4.
Bioinorg Chem Appl ; 2022: 8932137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721691

RESUMO

NMR-based metabolomics is a very effective tool to assess the tumor response to drugs by providing insights for their mode of action. Recently, a novel Pt(II) complex, [Pt(ƞ1-C2H4OMe)(DMSO)(phen)]+ (phen = 1,10-phenanthroline), Pt-EtOMeSOphen, was synthesized and studied for its antitumor activity against eight human cancer cell lines. Pt-EtOMeSOphen showed higher cytotoxic effects than cisplatin in most of the cancer cell lines and in particular against the neuroblastoma cell line (SH-SY5Y). In this study, the mechanism of action of Pt-EtOMeSOphen on SH-SY5Y cells was investigated using 1H NMR-based metabolomics and compared with cisplatin. The observed time response of SH-SY5Y cells under treatment revealed a faster action of Pt-EtOMeSOphen compared with cisplatin, with a response already observed after six hours of exposure, suggesting a cytosolic target. NMR-based metabolomics demonstrated a peculiar alteration of the glutathione metabolism pathway and the diacylglycerol expression.

5.
J Inorg Biochem ; 226: 111660, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801970

RESUMO

Nucleos(t)ide analogues (NA) belong to a family of compounds widely used in anticancer/antiviral treatments. They generally exhibit a cell toxicity limited by cellular uptake levels and the resulting nucleos(t)ides metabolism modifications, interfering with the cell machinery for nucleic acids synthesis. We previously synthesized purine nucleos(t)ide analogues N7-coordinated to a platinum centre with unaltered sugar moieties of the type: [Pt(dien)(N7-dGuo)]2+ (1; dien = diethylenetriamine; dGuo = 2'-deoxy-guanosine), [Pt(dien)(N7-dGMP)] (2; dGMP = 5'-(2'-deoxy)-guanosine monophosphate), and [Pt(dien)(N7-dGTP)]2- (3; dGTP = 5'-(2'-deoxy)-guanosine triphosphate), where the indicated electric charge is calculated at physiological pH (7.4). In this work, we specifically investigated the uptake of these complexes (1-3) at the plasma membrane level. Specific experiments on HeLa cervical cancer cells indicated a relevant cellular uptake of the model platinated deoxynucleos(t)ide 1 and 3 while complex 2 appeared unable to cross the cell plasma membrane. Obtained data buttress an uptake mechanism involving Na+-dependent concentrative transporters localized at the plasma membrane level. Consistently, 1 and 3 showed higher cytotoxicity with respect to complex 2 also suggesting selective possible applications as antiviral/antitumor drugs among the used model compounds.


Assuntos
Membrana Celular/metabolismo , Citotoxinas , Guanosina , Compostos Organoplatínicos , Transporte Biológico , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacocinética , Citotoxinas/farmacologia , Guanosina/análogos & derivados , Guanosina/química , Guanosina/farmacocinética , Guanosina/farmacologia , Células HeLa , Humanos , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacocinética , Compostos Organoplatínicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA