Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928156

RESUMO

Osteoarthritis (OA) is a degenerative joint disorder characterized by the progressive deterioration of articular cartilage driven and sustained by catabolic and inflammatory processes that lead to pain and functional impairment. Adipose-derived stem cells (ASCs) have emerged as a promising therapeutic strategy for OA due to their regenerative potential, which mainly relies on the adaptive release of paracrine molecules that are soluble or encapsulated in extracellular vesicles (EVs). The biological effects of EVs specifically depend on their cargo; in particular, microRNAs (miRNAs) can specifically modulate target cell function through gene expression regulation. This study aimed to investigate the impact of collection site (abdominal vs. peri-trochanteric adipose tissue) and collection method (surgical excision vs. lipoaspiration) on the miRNAs profile in ASC-derived EVs and their potential implications for OA therapy. EV-miRNA cargo profiles from ASCs of different origins were compared. An extensive bioinformatics search through experimentally validated and OA-related targets, pathways, and tissues was conducted. Several miRNAs involved in the restoration of cartilage homeostasis and in immunomodulation were identified in all ASC types. However, EV-miRNA expression profiles were affected by both the tissue-harvesting site and procedure, leading to peculiar characteristics for each type. Our results suggest that adipose-tissue-harvesting techniques and the anatomical site of origin influence the therapeutic efficacy of ASC-EVs for tissue-specific regenerative therapies in OA, which warrants further investigation.


Assuntos
Tecido Adiposo , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Osteoartrite/metabolismo , Osteoartrite/terapia , Osteoartrite/genética , Osteoartrite/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Regulação da Expressão Gênica
2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338737

RESUMO

The therapeutic effect of mesenchymal stromal cells (MSCs) has been described for a variety of disorders, including those affecting musculoskeletal tissues. In this context, the literature reports several data about the regenerative effectiveness of MSCs derived from bone marrow, adipose tissue, and an amniotic membrane (BMSCs, ASCs, and hAMSCs, respectively), either when expanded or when acting as clinical-grade biologic pillars of products used at the point of care. To date, there is no evidence about the superiority of one source over the others from a clinical perspective. Therefore, a reliable characterization of the tissue-specific MSC types is mandatory to identify the most effective treatment, especially when tailored to the target disease. Because molecular characterization is a crucial parameter for cell definition, the need for reliable normalizers as housekeeping genes (HKGs) is essential. In this report, the stability levels of five commonly used HKGs (ACTB, EF1A, GAPDH, RPLP0, and TBP) were sifted into BMSCs, ASCs, and hAMSCs. Adult and fetal/neonatal MSCs showed opposite HKG stability rankings. Moreover, by analyzing MSC types side-by-side, comparison-specific HKGs emerged. The effect of less performant HKG normalization was also demonstrated in genes coding for factors potentially involved in and predicting MSC therapeutic activity for osteoarthritis as a model musculoskeletal disorder, where the choice of the most appropriate normalizer had a higher impact on the donors rather than cell populations when compared side-by-side. In conclusion, this work confirms HKG source-specificity for MSCs and suggests the need for cell-type specific normalizers for cell source or condition-tailored gene expression studies.


Assuntos
Genes Essenciais , Células-Tronco Mesenquimais , Medula Óssea , Diferenciação Celular/genética , Medicina Regenerativa , Âmnio , Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas
3.
Cells ; 13(2)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38247858

RESUMO

Among the available therapeutics for the conservative treatment of osteoarthritis (OA), mesenchymal stromal cells (MSCs)-based products appear to be the most promising. Alongside minimally manipulated cell-based orthobiologics, where MSCs are the engine of the bioactive properties, cell expansion under good manufacturing practice (GMP) settings is actively studied to obtain clinical-grade pure populations able to concentrate the biological activity. One of the main characteristics of GMP protocols is the use of clinical-grade reagents, including the recently released serum-free/xeno-free (SFM/XFM) synthetic media, which differ significantly from the traditional reagents like those based on fetal bovine serum (FBS). As SFM/XFM are still poorly characterized, a main lack is the notion of reliable housekeeping genes (HKGs) for molecular studies, either standalone or in combination with standard conditions. Indeed, the aim of this work was to test the stability of five commonly used HKGs (ACTB, EF1A, GAPDH, RPLP0, and TBP) in adipose-derived MSCs (ASCs) cultivated in two commercially available SFM/XFM and to compare outcomes with those obtained in FBS. Four different applets widely recognized by the scientific community (NormFinder, geNorm, comparative ΔCt method, and BestKeeper) were used and data were merged to obtain a final stability order. The analysis showed that cells cultured in both synthetic media had a similar ranking for HKGs stability (GAPDH being best), albeit divergent from FBS expanded products (EF1A at top). Moreover, it was possible to identify specific HKGs for side by side studies, with EF1A/TBP being the most reliable normalizers for single SFM/XFM vs. FBS cultured cells and TBP the best one for a comprehensive analysis of all samples. In addition, stability of HKGs was donor-dependent. The normalization effect on selected genes coding for factors known to be involved in OA pathology, and whose amount should be carefully considered for the selection of the most appropriate MSC-based treatment, showed how HKGs choice might affect the perceived amount for the different media or donor. Overall, this work confirms the impact of SFM/XFM conditions on HKGs stability performance, which resulted similarly for both synthetic media analyzed in the study.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Humanos , Genes Essenciais , Meios de Cultura Livres de Soro , Adiposidade , Obesidade , Meios de Cultura/farmacologia , Osteoartrite/genética , Osteoartrite/terapia
4.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069080

RESUMO

Metabolic syndrome (MS) is a risk factor for breast cancer (BC) that increases its aggressiveness and metastasis. The prevalence of MS is higher in triple-negative breast cancer (TNBC), which is the molecular subtype with the worst prognosis. The molecular mechanisms underlying this association have not been fully elucidated. MiRNAs are small, non-coding RNAs that regulate gene expression. Aberrant expression of miRNAs in both tissues and fluids are linked to several pathologies. The aim of this work was to identify circulating miRNAs in patients with alterations associated with MS (AAMS) that also impact on BC. Using microarray technology, we detected 23 miRNAs altered in the plasma of women with AAMS that modulate processes linked to cancer. We found that let-7b-5p and miR-28-3p were decreased in plasma from patients with AAMS and also in BC tumors, while miR-877-5p was increased. Interestingly, miR-877-5p expression was associated with lower patient survival, and its expression was higher in PAM50 basal-like BC tumors compared to the other molecular subtypes. Analyses from public databases revealed that miR-877-5p was also increased in plasma from BC patients compared to plasma from healthy donors. We identified IGF2 and TIMP3 as validated target genes of miR-877-5p whose expression was decreased in BC tissue and moreover, was negatively correlated with the levels of this miRNA in the tumors. Finally, a miRNA inhibitor against miR-877-5p diminished viability and tumor growth of the TNBC model 4T1. These results reveal that miR-877-5p inhibition could be a therapeutic option for the treatment of TNBC. Further studies are needed to investigate the role of this miRNA in TNBC progression.


Assuntos
MicroRNA Circulante , Síndrome Metabólica , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Síndrome Metabólica/genética , MicroRNAs/metabolismo , MicroRNA Circulante/uso terapêutico , Regulação Neoplásica da Expressão Gênica
5.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768948

RESUMO

Osteoarthritis (OA) is a chronic disease characterized by joint tissue disruption and inflammation with a paucity of therapeutic options. Chondrocyte in vitro models are commonly used as the first step in evaluating new approaches and rely on the stimulation of an OA-like phenotype with inflammation often the method of choice. Inflammatory priming is frequently based on cytokines used at concentrations very far from the reality in the patients' synovial fluid (SF). The aim of this work was to compare the transcriptional response of chondrocytes to different inflammatory conditions: the high levels of IL1ß that are used for standardized inflammation protocols, OA-SF, IL1ß, IL6 and IFNγ at SF-like concentrations both individually and simultaneously to mimic a simplified "in vitro" SF. Both high IL1ß and OA-SF strongly influenced chondrocytes, while SF-like concentrations of cytokines gave weak (IL1ß alone or in combination) or no (IL6 and IFNγ alone) outcomes. Chondrocytes under the two most powerful polarizing conditions had a clearly distinct fingerprint, with only a shared albeit molecularly divergent effect on ECM stability, with IL1ß mainly acting on ECM degrading enzymes and OA-SF accounting for a higher turnover in favor of fibrous collagens. Moreover, OA-SF did not induce the inflammatory response observed with IL1ß. In conclusion, although partially similar in the endpoint phenotype, this work intends to encourage reflection on the robustness of inflammation-based in vitro OA models for molecular studies on chondrocytes.


Assuntos
Osteoartrite , Líquido Sinovial , Humanos , Condrócitos , Interleucina-6/genética , Osteoartrite/tratamento farmacológico , Citocinas/uso terapêutico , Inflamação
6.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555578

RESUMO

Bone-marrow-mesenchymal-stromal-cells (BMSCs)- and platelet-rich-plasma (PRP)-based therapies have shown potential for treating osteoarthritis (OA). Recently, the combination of these two approaches was proposed, with results that overcame those observed with the separate treatments, indicating a possible role of PRP in ameliorating BMSCs' regenerative properties. Since a molecular fingerprint of BMSCs cultivated in the presence of PRP is missing, the aim of this study was to characterize the secretome in terms of soluble factors and extracellular-vesicle (EV)-embedded miRNAs from the perspective of tissues, pathways, and molecules which frame OA pathology. One hundred and five soluble factors and one hundred eighty-four EV-miRNAs were identified in the PRP-treated BMSCs' secretome, respectively. Several soluble factors were related to the migration of OA-related immune cells, suggesting the capacity of BMSCs to attract lympho-, mono-, and granulocytes and modulate their inflammatory status. Accordingly, several EV-miRNAs had an immunomodulating role at both the single-factor and cell level, together with the ability to target OA-characterizing extracellular-matrix-degrading enzymes and cartilage destruction pathways. Overall, anti-inflammatory and protective signals far exceeded inflammation and destruction cues for cartilage, macrophages, and T cells. This study demonstrates that BMSCs cultivated in the presence of PRP release therapeutic molecules and give molecular ground for the use of this combined and innovative therapy for OA treatment.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite , Plasma Rico em Plaquetas , Humanos , Secretoma , Osteoartrite/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Anti-Inflamatórios/metabolismo , Células-Tronco Mesenquimais/metabolismo , Plasma Rico em Plaquetas/metabolismo
7.
Front Med (Lausanne) ; 9: 992386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36314003

RESUMO

The purpose of the present study is to predict by bioinformatics the activity of the extracellular vesicle (EV)-embedded micro RNA (miRNAs) secreted by cartilage cells (CCs), adipose tissue-derived- (ASCs), and bone marrow-derived stem cells (BMSCs) and verify their immunomodulatory potential supporting our bioinformatics findings to optimize the autologous cell-based therapeutic strategies for osteoarthritis (OA) management. Cells were isolated from surgical waste tissues of three patients who underwent total hip replacement, expanded and the EVs were collected. The expression of EV-embedded miRNA was evaluated with the QuantStudio 12 K Flex OpenArray® platform. Mientournet and ingenuity pathway analysis (IPA) were used for validated target prediction analysis and to identify miRNAs involved in OA and inflammation. Cells shared the expression of 325 miRNAs embedded in EVs and differed for the expression of a small number of them. Mienturnet revealed no results for miRNAs selectively expressed by ASCs, whereas miRNA expressed by CCs and BMSCs were putatively involved in the modulation of cell cycle, senescence, apoptosis, Wingless and Int-1 (Wnt), transforming growth factor beta (TGFß), vascular endothelial growth factor (VEGF), Notch, Hippo, tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL-1ß), insulin like growth factor 1 (IGF-1), RUNX family transcription factor 2 (RUNX2), and endochondral ossification pathways. Cartilage homeostasis, macrophages and T cells activity and inflammatory mediators were identified by IPA as targets of the miRNAs found in all the cell populations. Co-culture tests on macrophages and T cells confirmed the immuno-modulatory ability of CCs, ASCs, and BMSCs. The study findings support the rationale behind the use of cell-based therapy for the treatment of OA.

8.
Connect Tissue Res ; 62(5): 570-579, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32921180

RESUMO

AIM OF THE STUDY: Tendons are exposed to mechanical stress constantly during movements and thus they are frequently subjected to injuries. Rotator cuff tears are common musculoskeletal disorders, mainly involving the supraspinatus tendon. The characterization of the tenocytes derived from this tendon and the comparison to cells isolated from the long head of the biceps tendon obtained from donors affected by rotator cuff disease may improve the knowledge of the cellular mechanisms involved in the initiation and progression of the pathology. Thus, the aim of the present study was to characterize and compare donor-matched human tendon cells (TCs) isolated from the long head of the biceps (LHB-TCs) and the supraspinatus tendons (SSP-TCs) of patients affected by rotator cuff tears. METHODS: donor-matched LHB-TCs and SSP-TCs were isolated and cultured up to passage 3. Phenotypic appearance, metabolic activity, DNA content, production of soluble mediators (IL-1Ra, IL-1ß, IL-6, and VEGF) and gene expression of tendon markers (SCX, COL1A1, COL3A1), inflammatory (PTGS2), and catabolic enzymes (MMP-1, MMP-3) were evaluated. RESULTS: LHB-TCs showed an elongated fibroblast-like shape, while SSP-TCs appeared irregular with jagged membrane. SSP-TCs gene expression revealed an augmented production of PTGS2, a marker of inflammation, whereas they produced a reduced amount of IL-6, in respect to LHB-TCs. CONCLUSION: SSP-TCs showed higher cellular stress and expression of inflammatory markers with respect to donor-matched LHB-TCs, suggesting that addressing the physio-pathological state of supraspinatus tendon cells during treatment of rotator cuff tears could favor tissue healing and possibly prevent relapses.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Biomarcadores , Ciclo-Oxigenase 2 , Humanos , Interleucina-6 , Tendões
9.
PLoS One ; 15(9): e0239807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32998161

RESUMO

Tendinopathy is a degenerative disease in which inflammatory mediators have been found to be sometimes present. The interaction between inflammation and matrix remodeling in human tendon cells (TCs) is supported by the secretion of cytokines such as IL-1ß, IL-6 and IL-33. In this context, it has been demonstrated that pulsed electromagnetic fields (PEMFs) were able to reduce inflammation and promote tendon marker synthesis. The aim of this study was to evaluate the anabolic and anti-inflammatory PEMF-mediated response on TCs in an in vitro model of inflammation. Moreover, since PEMFs enhance the anti-inflammatory efficacy of adenosine through the adenosine receptors (ARs), the study also focused on the role of A2AARs. Human TCs were exposed to PEMFs for 48 hours. After stimulation, A2AAR saturation binding experiments were performed. Along with 48 hours PEMF stimulation, TCs were treated with IL-1ß and A2AAR agonist CGS-21680. IL-1Ra, IL-6, IL-8, IL-10, IL-33, VEGF, TGF-ß1, PGE2 release and SCX, COL1A1, COL3A1, ADORA2A expression were quantified. PEMFs exerted A2AAR modulation on TCs and promoted COL3A1 upregulation and IL-33 secretion. In presence of IL-1ß, TCs showed an upregulation of ADORA2A, SCX and COL3A1 expression and an increase of IL-6, IL-8, PGE2 and VEGF secretion. After PEMF and IL-1ß exposure, IL-33 was upregulated, whereas IL-6, PGE2 and ADORA2A were downregulated. These findings demonstrated that A2AARs have a role in the promotion of the TC anabolic/reparative response to PEMFs and to IL-1ß.


Assuntos
Regulação para Baixo/efeitos da radiação , Campos Eletromagnéticos , Receptor A2A de Adenosina/metabolismo , Tendões/metabolismo , Regulação para Cima/efeitos da radiação , Agonistas do Receptor A2 de Adenosina/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Citocinas/genética , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Interleucina-1beta/farmacologia , Interleucina-33/metabolismo , Interleucina-6/metabolismo , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/genética , Tendões/citologia , Tendões/efeitos da radiação , Regulação para Cima/efeitos dos fármacos
10.
Cells ; 9(5)2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397409

RESUMO

Extracellular vesicles (EVs) showed therapeutic properties in several applications, many in regenerative medicine. A clear example is in the treatment of osteoarthritis (OA), where adipose-derived mesenchymal stem cells (ASCs)-EVs were able to promote regeneration and reduce inflammation in both synovia and cartilage. A still obscure issue is the effective ability of EVs to be internalized by target cells, rather than simply bound to the extracellular matrix (ECM) or plasma membrane, since the current detection or imaging technologies cannot fully decipher it due to technical limitations. In the present study, human articular chondrocytes (ACHs) and fibroblast-like synoviocytes (FLSs) isolated from the same OA patients were cocultured in 2D as well as in 3D conditions with fluorescently labeled ASC-EVs, and analyzed by flow cytometry or confocal microscopy, respectively. In contrast with conventional 2D, in 3D cultures, confocal microscopy allowed a clear detection of the tridimensional morphology of the cells and thus an accurate discrimination of EV interaction with the external and/or internal cell environment. In both 2D and 3D conditions, FLSs were more efficient in interacting with ASC-EVs and 3D imaging demonstrated a faster uptake process. The removal of the hyaluronic acid component from the ECM of both cell types reduced their interaction with ASC-EVs only in the 2D system, showing that 2D and 3D conditions can yield different outcomes when investigating events where ECM plays a key role. These results indicate that studying EVs binding and uptake both in 2D and 3D guarantees a more precise and complementary characterization of the molecular mechanisms involved in the process. The implementation of this strategy can become a valuable tool not only for basic research, but also for release assays and potency prediction for clinical EV batches.


Assuntos
Microambiente Celular , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , Cartilagem Articular/citologia , Comunicação Celular , Células Cultivadas , Condrócitos/citologia , Endocitose , Feminino , Fibroblastos/citologia , Humanos , Ácido Hialurônico/isolamento & purificação , Dispositivos Lab-On-A-Chip , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Fenótipo , Sinoviócitos/citologia
11.
J Clin Med ; 9(4)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326092

RESUMO

BACKGROUND: Knee cartilage defects can be retrieved in 60% of patients undergoing knee arthroscopy, especially in the patellofemoral joint. Different techniques have been proposed to treat patellar defects, although most of them are associated with short-term results. In this study Autologous Matrix Induced Chondrogenesis (AMIC), combining subchondral microfractures with a collagen membrane (type I and III collagen), was used in the treatment of isolated patellar cartilage defects. METHODS: Twenty-four patients were enrolled in this retrospective study. Subjective-International Knee Documentation Committee (IKDC), Visual Analog Scale for Pain (VAS), and Kujala score were collected at 1, 3, 6, and 12 months after surgery, whereas the Tegner Activity Level Scale was determined preoperatively and at final follow-up (final-FU). The same postoperative management and rehabilitation protocol was adopted for all the patients. RESULTS: Fourteen patients met the inclusion-exclusion criteria and were evaluated at a mean final-FU of 68.2 months (range 25.4-111.2). At 12 months, Kujala, IKDC, and VAS scores significantly increased in comparison to the preoperative assessment, whereas no statistically significant differences were reported between 12 months and final follow-up. CONCLUSION: This study demonstrated very good results throughout the follow-up, also in sports patients. The AMIC technique, together with an adequate rehabilitation protocol, can be considered as a reliable one-step alternative for the treatment of large isolated patellar cartilage defects.

12.
Stem Cell Res Ther ; 11(1): 165, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345351

RESUMO

BACKGROUND: Mesenchymal stromal cell (MSC)-enriched products showed positive clinical outcomes in regenerative medicine, where tissue restoration and inflammation control are needed. GMP-expanded MSCs displayed an even higher potential due to exclusive secretion of therapeutic factors, both free and conveyed within extracellular vesicles (EVs), collectively termed secretome. Moreover, priming with biochemical cues may influence the portfolio and biological activities of MSC-derived factors. For these reasons, the use of naive or primed secretome gained attention as a cell-free therapeutic option. Albeit, at present, a homogenous and comprehensive secretome fingerprint is still missing. Therefore, the aim of this work was to deeply characterize adipose-derived MSC (ASC)-secreted factors and EV-miRNAs, and their modulation after IFNγ preconditioning. The crucial influence of the target pathology or cell type was also scored in osteoarthritis to evaluate disease-driven potency. METHODS: ASCs were isolated from four donors and cultured with and without IFNγ. Two-hundred secreted factors were assayed by ELISA. ASC-EVs were isolated by ultracentrifugation and validated by flow cytometry, transmission electron microscopy, and nanoparticle tracking analysis. miRNome was deciphered by high-throughput screening. Bioinformatics was used to predict the modulatory effect of secreted molecules on pathologic cartilage and synovial macrophages based on public datasets. Models of inflammation for both macrophages and chondrocytes were used to test by flow cytometry the secretome anti-inflammatory potency. RESULTS: Data showed that more than 60 cytokines/chemokines could be identified at varying levels of intensity in all samples. The vast majority of factors are involved in extracellular matrix remodeling, and chemotaxis or motility of inflammatory cells. IFNγ is able to further increase the capacity of the secretome to stimulate cell migration signals. Moreover, more than 240 miRNAs were found in ASC-EVs. Sixty miRNAs accounted for > 95% of the genetic message that resulted to be chondro-protective and M2 macrophage polarizing. Inflammation tipped the balance towards a more pronounced tissue regenerative and anti-inflammatory phenotype. In silico data were confirmed on inflamed macrophages and chondrocytes, with secretome being able to increase M2 phenotype marker CD163 and reduce the chondrocyte inflammation marker VCAM1, respectively. IFNγ priming further enhanced secretome anti-inflammatory potency. CONCLUSIONS: Given the portfolio of soluble factors and EV-miRNAs, ASC secretome showed a marked capacity to stimulate cell motility and modulate inflammatory and degenerative processes. Preconditioning is able to increase this ability, suggesting inflammatory priming as an effective strategy to obtain a more potent clinical product which use should always be driven by the molecular mark of the target pathology.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite , Humanos , Medicina Regenerativa
13.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111031

RESUMO

Mesenchymal stem cells (MSCs) derived from adipose tissue and used either as expanded cells or minimally manipulated cell preparations showed positive clinical outcomes in regenerative medicine approaches based on tissue restoration and inflammation control, like in osteoarthritis (OA). Recently, MSCs' healing capacity has been ascribed to the large array of soluble factors, including soluble cytokines/chemokines and miRNAs conveyed within extracellular vesicles (EVs). Therefore, in this study, 200 secreted cytokines, chemokines and growth factors via ELISA, together with EV-embedded miRNAs via high-throughput techniques, were scored in adipose-derived MSCs (ASCs) cultivated under inflammatory conditions, mimicking OA synovial fluid. Both factors (through most abundantly expressed TIMP1, TIMP2, PLG and CTSS) and miRNAs (miR-24-3p, miR-222-3p and miR-193b-3p) suggested a strong capacity for ASCs to reduce matrix degradation activities, as those activated in OA cartilage, and switch synovial macrophages, often characterized by an M1 inflammatory polarization, towards an M2 phenotype. Moreover, the crucial importance of selecting the target tissue is discussed, showing how a focused search may greatly improve potency prediction and explain clinical outcomes. In conclusion, herein presented data shed light about the way ASCs regulate cell homeostasis and regenerative pathways in an OA-resembling environment, therefore suggesting a rationale for the use of MSC-enriched clinical products, such as stromal vascular fraction and microfragmented adipose tissue, in joint pathologies.


Assuntos
Tecido Adiposo/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteoartrite do Joelho/terapia , Cicatrização/fisiologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , Líquido Sinovial/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Cicatrização/genética
14.
Cytotherapy ; 21(12): 1179-1197, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31784241

RESUMO

Osteoarthritis (OA) is a debilitating, degenerative joint disease characterized by progressive destruction of articular cartilage. Given the poor repair capacity of articular cartilage and the associated local destructive immune/inflammatory responses involving all joint structures, OA frequently ends up as a "whole joint failure" requiring prosthetic replacement. Current pharmacological efforts, belatedly started, mainly aim at symptomatic pain relief, underscoring the need for novel therapeutic schemes designed to modify the course of the disease. Mesenchymal stem cell (MSC)-based therapy has gained significant interest, sparking the design of multiple trials proving safety while providing promising preliminary efficacy results. MSCs possess 'medicinal signaling cell' properties related to their immunomodulatory and anti-inflammatory effects, which induce the establishment of a pro-regenerative microenvironment at the injured tissue. Those trophic effects are paralleled by the long-established chondroprogenitor capacity that can be harnessed to ex vivo fabricate engineered constructs to repair damaged articular cartilage. The present review focuses on these two aspects of the use of MSCs for articular cartilage damage, namely, cell therapy and tissue engineering, providing information on their use criteria, advancements, challenges and strategies to overcome them.


Assuntos
Cartilagem Articular/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Osteoartrite/terapia , Engenharia Tecidual/tendências , Animais , Regeneração Óssea/fisiologia , Cartilagem Articular/fisiopatologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Osteoartrite/fisiopatologia , Regeneração/fisiologia , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Engenharia Tecidual/métodos
15.
J Clin Med ; 8(6)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31159439

RESUMO

BACKGROUND: This study aims to investigate the clinical and radiological efficacy of three-dimensional acellular scaffolds (MaioRegen) in restoring osteochondral knee defects. METHODS: MEDLINE, Scopus, CINAHL, Embase, and Cochrane Databases were searched for articles in which patients were treated with MaioRegen for osteochondral knee defects. RESULTS: A total of 471 patients were included in the study (mean age 34.07 ± 5.28 years). The treatment involved 500 lesions divided as follows: 202 (40.4%) medial femoral condyles, 107 (21.4%) lateral femoral condyles, 28 (5.6%) tibial plateaus, 46 (9.2%) trochleas, 74 (14.8%) patellas, and 43 (8.6%) unspecified femoral condyles. Mean lesion size was 3.6 ± 0.85 cm2. Only four studies reported a follow-up longer than 24 months. Significant clinical improvement has been reported in almost all studies with further improvement up to 5 years after surgery. A total of 59 complications were reported of which 52 (11.1%) experienced minor complications and 7 (1.48%) major complications. A total of 16 (3.39%) failures were reported. CONCLUSION: This systematic review describes the current available evidence for the treatment of osteochondral knee defects with MaioRegen Osteochondral substitute reporting promising satisfactory and reliable results at mid-term follow-up. A low rate of complications and failure was reported, confirming the safety of this scaffold. Considering the low level of evidence of the study included in the review, this data does not support the superiority of the Maioregen in terms of clinical improvement at follow-up compared to conservative treatment or other cartilage techniques.

16.
Stem Cell Rev Rep ; 15(5): 743-754, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31161551

RESUMO

During the last two decades, mesenchymal stem cells (MSCs) gained a place of privilege in the field of regenerative medicine. Recently, extracellular vesicles (EVs) have been identified as major mediators of MSCs immunosuppressive as well as pro-regenerative activities in many disease models, including inflammatory/degenerative conditions as joint diseases and osteoarthritis. In order to shed light on EVs potential, a rigorous profiling of embedded proteins, lipids and nucleic acids (mRNA/miRNA) is mandatory. Nevertheless, reliable strategies to efficiently score miRNA cargo and modulation under diverse experimental conditions or treatments are missing. The aim of this work was to identify reliable reference genes (RGs) to analyze miRNA content in EVs secreted by adipose-derived MSCs (ASCs) and verify their consistency under inflammatory conditions that were proposed to enhance ASC-EVs immunomodulatory and regenerative potential. RefFinder algorithm, that integrates the currently available major computational programs (geNorm, NormFinder, BestKeeper, and Delta Ct method), allowed to identify miR-22-5p and miR-29a-5p as the most stable RGs. Notably, both miRNAs maintained the highest stability when EVs isolated from IFNg-treated ASCs were included in the analysis. In addition, considerable effects of suboptimal RGs choice on the reliable quantification of miRNAs involved at different levels (tissue homeostasis or macrophage polarization) in the osteoarthritis phenotype, and thus considered as promising therapeutic molecule, have clearly been demonstrated. In conclusion, a proper normalization method is not only needed for research purposes but also mandatory to characterize clinical products and predict their therapeutic potential, especially in the emerging field of MSCs derived-EVs as new tools for regenerative medicine.


Assuntos
Vesículas Extracelulares/genética , Inflamação/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Osteoartrite/genética , RNA Mensageiro/metabolismo , Adulto , Células Cultivadas , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Inflamação/fisiopatologia , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Osteoartrite/fisiopatologia , RNA Mensageiro/genética , Padrões de Referência
17.
Cell Death Dis ; 10(4): 299, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931931

RESUMO

About 20% of prostate cancer (PCa) patients progress to metastatic disease. Metabolic syndrome (MeS) is a pathophysiological disorder that increases PCa risk and aggressiveness. C-terminal binding protein (CTBP1) is a transcriptional corepressor that is activated by high-fat diet (HFD). Previously, our group established a MeS/PCa mice model that identified CTBP1 as a novel link associating both diseases. Here, we integrated in vitro (prostate tumor cell lines) and in vivo (MeS/PCa NSG mice) models with molecular and cell biology techniques to investigate MeS/CTBP1 impact over PCa progression, particularly over cell adhesion, mRNA/miRNA expression and PCa spontaneous metastasis development. We found that CTBP1/MeS regulated expression of genes relevant to cell adhesion and PCa progression, such as cadherins, integrins, connexins, and miRNAs in PC3 xenografts. CTBP1 diminished PCa cell adhesion, membrane attachment to substrate and increased filopodia number by modulating gene expression to favor a mesenchymal phenotype. NSG mice fed with HFD and inoculated with CTBP1-depleted PC3 cells, showed a decreased number and size of lung metastases compared to control. Finally, CTBP1 and HFD reduce hsa-mir-30b-5p plasma levels in mice. This study uncovers for the first time the role of CTBP1/MeS in PCa progression and its molecular targets.


Assuntos
Oxirredutases do Álcool/metabolismo , Adesão Celular/genética , Proteínas de Ligação a DNA/metabolismo , Síndrome Metabólica/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Mensageiro/genética , Oxirredutases do Álcool/genética , Animais , Proteínas de Ligação a DNA/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Xenoenxertos/citologia , Xenoenxertos/metabolismo , Humanos , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/metabolismo , Metástase Neoplásica , Células PC-3 , Neoplasias da Próstata/patologia , Pseudópodes/genética , Pseudópodes/metabolismo , RNA Mensageiro/metabolismo
18.
Cells ; 8(4)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018576

RESUMO

Mesenchymal stem cells (MSCs) are promising tools for cell-based therapies due to their homing to injury sites, where they secrete bioactive factors such as cytokines, lipids, and nucleic acids, either free or conveyed within extracellular vesicles (EVs). Depending on the local environment, MSCs' therapeutic value may be modulated, determining their fate and cell behavior. Inflammatory signals may induce critical changes on both the phenotype and secretory portfolio. Intriguingly, in animal models resembling joint diseases as osteoarthritis (OA), inflammatory priming enhanced the healing capacity of MSC-derived EVs. In this work, we selected miRNA reference genes (RGs) from the literature (let-7a-5p, miR-16-5p, miR-23a-3p, miR-26a-5p, miR-101-3p, miR-103a-3p, miR-221-3p, miR-423-5p, miR-425-5p, U6 snRNA), using EVs isolated from adipose-derived MSCs (ASCs) primed with IFNγ (iASCs). geNorm, NormFinder, BestKeeper, and ΔCt methods identified miR-26a-5p/16-5p as the most stable, while miR-103a-rp/425-5p performed poorly. Our results were validated on miRNAs involved in OA cartilage trophism. Only a proper normalization strategy reliably identified the differences between donors, a critical factor to empower the therapeutic value of future off-the-shelf MSC-EV isolates. In conclusion, the proposed pipeline increases the accuracy of MSC-EVs embedded miRNAs assessment, and help predicting donor variability for precision medicine approaches.


Assuntos
Vesículas Extracelulares/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Animais , Diferenciação Celular , Citocinas/genética , Seleção do Doador/métodos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/fisiologia , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , MicroRNAs/análise , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência
19.
Int J Mol Sci ; 20(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841483

RESUMO

Osteoarthritis (OA) leads to chronic pain and disability, and traditional conservative treatments are not effective in the long term. The intra-articular injection of mesenchymal stem cells (MSCs) is considered a novel therapy for OA whose efficacy mainly relies on the adaptive release of paracrine molecules which are either soluble or extracellular vesicles (EVs) embedded. The correct quantification of EV-miRNAs using reliable reference genes (RGs) is a crucial step in optimizing this future therapeutic cell-free approach. The purpose of this study is to rate the stabilities of literature-selected proposed RGs for EV-miRNAs in adipose derived-MSCs (ASCs). EVs were isolated by ultracentrifugation from ASCs cultured with or without inflammatory priming mimicking OA synovial fluid condition. Expression of putative RGs (let-7a-5p, miR-16-5p, miR-23a-3p, miR-26a-5p, miR-101-3p, miR-103a-3p, miR-221-3p, miR-423-5p, miR-425-5p, U6 snRNA) was scored by using the algorithms geNorm, NormFinder, BestKeeper and ΔCt method. miR-16a-5p/miR-23a-3p yielded the most stable RGs, whereas let-7a-5p/miR-425-5p performed poorly. Outcomes were validated by qRT-PCR on miR-146a-5p, reported to be ASC-EVs enriched and involved in OA. Incorrect RG selection affected the evaluation of miR-146a-5p abundance and modulation by inflammation, with both values resulting strongly donor-dependent. Our findings demonstrated that an integrated approach of multiple algorithms is necessary to identify reliable, stable RGs for ASC-EVs miRNAs evaluation. A correct approach would increase the accuracy of embedded molecule assessments aimed to develop therapeutic strategies for the treatment of OA based on EVs.


Assuntos
Vesículas Extracelulares/metabolismo , Transplante de Células-Tronco Mesenquimais/normas , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Osteoartrite/terapia , Tecido Adiposo/citologia , Células Cultivadas , Feminino , Humanos , Células-Tronco Mesenquimais/classificação , Pessoa de Meia-Idade , Padrões de Referência
20.
Stem Cell Res Ther ; 10(1): 109, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30922413

RESUMO

BACKGROUND: Osteoarthritis (OA) is the most prevalent joint disease, and to date, no options for effective tissue repair and restoration are available. With the aim of developing new therapies, the impact of mesenchymal stem cells (MSCs) has been explored, and the efficacy of MSCs started to be deciphered. A strong paracrine capacity relying on both secreted and vesicle-embedded (EVs) protein or nucleic acid-based factors has been proposed as the principal mechanism that contributes to tissue repair. This work investigated the mechanism of internalization of extracellular vesicles (EVs) released by adipose-derived MSCs (ASCs) and the role of shuttled miRNAs in the restoration of homeostasis in an in vitro model of human fibroblast-like synoviocytes (FLSs) from OA patients. METHODS: ASC-EVs were isolated by differential centrifugation and validated by flow cytometry and nanoparticle tracking analysis. ASC-EVs with increased hyaluronan (HA) receptor CD44 levels were obtained culturing ASCs on HA-coated plastic surfaces. OA FLSs with intact or digested HA matrix were co-cultured with fluorescent ASC-EVs, and incorporation scored by flow cytometry and ELISA. ASC-EV complete miRNome was deciphered by high-throughput screening. In inflamed OA FLSs, genes and pathways potentially regulated by ASC-EV miRNA were predicted by bioinformatics. OA FLSs stimulated with IL-1ß at physiological levels (25 pg/mL) were treated with ASC-EVs, and expression of inflammation and OA-related genes was measured by qRT-PCR over a 10-day time frame with modulated candidates verified by ELISA. RESULTS: The data showed that HA is involved in ASC-EV internalization in FLSs. Indeed, both removal of HA matrix presence on FLSs and modulation of CD44 levels on EVs affected their recruitment. Bioinformatics analysis of EV-embedded miRNAs showed their ability to potentially regulate the main pathways strictly associated with synovial inflammation in OA. In this frame, ASC-EVs reduced the expression of pro-inflammatory cytokines and chemokines in a chronic model of FLS inflammation. CONCLUSIONS: Given their ability to affect FLS behavior in a model of chronic inflammation through direct interaction with HA matrix and miRNA release, ASC-EVs confirm their role as a novel therapeutic option for osteoarthritic joints.


Assuntos
Vesículas Extracelulares , Ácido Hialurônico/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Modelos Biológicos , Osteoartrite , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Células-Tronco Mesenquimais/patologia , Osteoartrite/metabolismo , Osteoartrite/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA