Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(12): e112712, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37139896

RESUMO

cGAS-STING signalling is induced by detection of foreign or mislocalised host double-stranded (ds)DNA within the cytosol. STING acts as the major signalling hub, where it controls production of type I interferons and inflammatory cytokines. Basally, STING resides on the ER membrane. Following activation STING traffics to the Golgi to initiate downstream signalling and subsequently to endolysosomal compartments for degradation and termination of signalling. While STING is known to be degraded within lysosomes, the mechanisms controlling its delivery remain poorly defined. Here we utilised a proteomics-based approach to assess phosphorylation changes in primary murine macrophages following STING activation. This identified numerous phosphorylation events in proteins involved in intracellular and vesicular transport. We utilised high-temporal microscopy to track STING vesicular transport in live macrophages. We subsequently identified that the endosomal complexes required for transport (ESCRT) pathway detects ubiquitinated STING on vesicles, which facilitates the degradation of STING in murine macrophages. Disruption of ESCRT functionality greatly enhanced STING signalling and cytokine production, thus characterising a mechanism controlling effective termination of STING signalling.


Assuntos
Imunidade Inata , Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Macrófagos/metabolismo , Nucleotidiltransferases/metabolismo , DNA , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
3.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35657352

RESUMO

Microbiota contribute to the induction of type 2 diabetes by high-fat/high-sugar (HFHS) diet, but which organs/pathways are impacted by microbiota remain unknown. Using multiorgan network and transkingdom analyses, we found that microbiota-dependent impairment of OXPHOS/mitochondria in white adipose tissue (WAT) plays a primary role in regulating systemic glucose metabolism. The follow-up analysis established that Mmp12+ macrophages link microbiota-dependent inflammation and OXPHOS damage in WAT. Moreover, the molecular signature of Mmp12+ macrophages in WAT was associated with insulin resistance in obese patients. Next, we tested the functional effects of MMP12 and found that Mmp12 genetic deficiency or MMP12 inhibition improved glucose metabolism in conventional, but not in germ-free mice. MMP12 treatment induced insulin resistance in adipocytes. TLR2-ligands present in Oscillibacter valericigenes bacteria, which are expanded by HFHS, induce Mmp12 in WAT macrophages in a MYD88-ATF3-dependent manner. Thus, HFHS induces Mmp12+ macrophages and MMP12, representing a microbiota-dependent bridge between inflammation and mitochondrial damage in WAT and causing insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Microbiota , Adipócitos/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Humanos , Inflamação/metabolismo , Insulina , Resistência à Insulina/fisiologia , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Camundongos
4.
Front Immunol ; 13: 794776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281062

RESUMO

Stimulator of Interferon Genes (STING) is a cytosolic sensor of cyclic dinucleotides (CDNs). The activation of dendritic cells (DC) via the STING pathway, and their subsequent production of type I interferon (IFN) is considered central to eradicating tumours in mouse models. However, this contribution of STING in preclinical murine studies has not translated into positive outcomes of STING agonists in phase I & II clinical trials. We therefore questioned whether a difference in human DC responses could be critical to the lack of STING agonist efficacy in human settings. This study sought to directly compare mouse and human plasmacytoid DCs and conventional DC subset responses upon STING activation. We found all mouse and human DC subsets were potently activated by STING stimulation. As expected, Type I IFNs were produced by both mouse and human plasmacytoid DCs. However, mouse and human plasmacytoid and conventional DCs all produced type III IFNs (i.e., IFN-λs) in response to STING activation. Of particular interest, all human DCs produced large amounts of IFN-λ1, not expressed in the mouse genome. Furthermore, we also found differential cell death responses upon STING activation, observing rapid ablation of mouse, but not human, plasmacytoid DCs. STING-induced cell death in murine plasmacytoid DCs occurred in a cell-intrinsic manner and involved intrinsic apoptosis. These data highlight discordance between STING IFN and cell death responses in mouse and human DCs and caution against extrapolating STING-mediated events in mouse models to equivalent human outcomes.


Assuntos
Interferon Tipo I , Animais , Morte Celular , Citosol/metabolismo , Células Dendríticas/metabolismo , Humanos , Interferon Tipo I/metabolismo , Proteínas de Membrana , Camundongos , Transdução de Sinais
5.
Immunity ; 53(3): 533-547.e7, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32735843

RESUMO

Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections.


Assuntos
Apoptose/imunologia , Macrófagos/imunologia , Necroptose/imunologia , Piroptose/imunologia , Infecções por Salmonella/imunologia , Salmonella/imunologia , Animais , Caspase 1/deficiência , Caspase 1/genética , Caspase 12/deficiência , Caspase 12/genética , Caspase 8/genética , Caspases Iniciadoras/deficiência , Caspases Iniciadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
6.
Nat Commun ; 11(1): 3816, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732870

RESUMO

Detection of microbial components such as lipopolysaccharide (LPS) by Toll-like receptor 4 (TLR4) on macrophages induces a robust pro-inflammatory response that is dependent on metabolic reprogramming. These innate metabolic changes have been compared to aerobic glycolysis in tumour cells. However, the mechanisms by which TLR4 activation leads to mitochondrial and glycolytic reprogramming are unknown. Here we show that TLR4 activation induces a signalling cascade recruiting TRAF6 and TBK-1, while TBK-1 phosphorylates STAT3 on S727. Using a genetically engineered mouse model incapable of undergoing STAT3 Ser727 phosphorylation, we show ex vivo and in vivo that STAT3 Ser727 phosphorylation is critical for LPS-induced glycolytic reprogramming, production of the central immune response metabolite succinate and inflammatory cytokine production in a model of LPS-induced inflammation. Our study identifies non-canonical STAT3 activation as the crucial signalling intermediary for TLR4-induced glycolysis, macrophage metabolic reprogramming and inflammation.


Assuntos
Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Expressão Gênica , Glicólise/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT3/genética , Serina/genética , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/genética
7.
Cell Rep ; 31(1): 107492, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268090

RESUMO

Stimulator of Interferon Genes (STING) is a critical component of host innate immune defense but can contribute to chronic autoimmune or autoinflammatory disease. Once activated, the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS)-STING pathway induces both type I interferon (IFN) expression and nuclear factor-κB (NF-κB)-mediated cytokine production. Currently, these two signaling arms are thought to be mediated by a single upstream kinase, TANK-binding kinase 1 (TBK1). Here, using genetic and pharmacological approaches, we show that TBK1 alone is dispensable for STING-induced NF-κB responses in human and mouse immune cells, as well as in vivo. We further demonstrate that TBK1 acts redundantly with IκB kinase ε (IKKε) to drive NF-κB upon STING activation. Interestingly, we show that activation of IFN regulatory factor 3 (IRF3) is highly dependent on TBK1 kinase activity, whereas NF-κB is significantly less sensitive to TBK1/IKKε kinase inhibition. Our work redefines signaling events downstream of cGAS-STING. Our findings further suggest that cGAS-STING will need to be targeted directly to effectively ameliorate the inflammation underpinning disorders associated with STING hyperactivity.


Assuntos
Quinase I-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Quinase I-kappa B/fisiologia , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , NF-kappa B/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/imunologia
9.
mBio ; 11(1)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992625

RESUMO

Activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) plays a critical role in antiviral responses to many DNA viruses. Sensing of cytosolic DNA by cGAS results in synthesis of the endogenous second messenger cGAMP that activates stimulator of interferon genes (STING) in infected cells. Critically, cGAMP can also propagate antiviral responses to uninfected cells through intercellular transfer, although the modalities of this transfer between epithelial and immune cells remain poorly defined. We demonstrate here that cGAMP-producing epithelial cells can transactivate STING in cocultured macrophages through direct cGAMP transfer. cGAMP transfer was reliant upon connexin expression by epithelial cells and pharmacological inhibition of connexins blunted STING-dependent transactivation of the macrophage compartment. Macrophage transactivation by cGAMP contributed to a positive-feedback loop amplifying antiviral responses, significantly protecting uninfected epithelial cells against viral infection. Collectively, our findings constitute the first direct evidence of a connexin-dependent cGAMP transfer to macrophages by epithelial cells, to amplify antiviral responses.IMPORTANCE Recent studies suggest that extracellular cGAMP can be taken up by macrophages to engage STING through several mechanisms. Our work demonstrates that connexin-dependent communication between epithelial cells and macrophages plays a significant role in the amplification of antiviral responses mediated by cGAMP and suggests that pharmacological strategies aimed at modulating connexins may have therapeutic applications to control antiviral responses in humans.


Assuntos
Conexinas/metabolismo , Interações Hospedeiro-Patógeno , Nucleotídeos Cíclicos/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Viroses/etiologia , Viroses/metabolismo , Animais , Biomarcadores , Células Cultivadas , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunomodulação , Camundongos
10.
Cell Rep ; 25(9): 2339-2353.e4, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30485804

RESUMO

Intrinsic apoptosis resulting from BAX/BAK-mediated mitochondrial membrane damage is regarded as immunologically silent. We show here that in macrophages, BAX/BAK activation results in inhibitor of apoptosis (IAP) protein degradation to promote caspase-8-mediated activation of IL-1ß. Furthermore, BAX/BAK signaling induces a parallel pathway to NLRP3 inflammasome-mediated caspase-1-dependent IL-1ß maturation that requires potassium efflux. Remarkably, following BAX/BAK activation, the apoptotic executioner caspases, caspase-3 and -7, act upstream of both caspase-8 and NLRP3-induced IL-1ß maturation and secretion. Conversely, the pyroptotic cell death effectors gasdermin D and gasdermin E are not essential for BAX/BAK-induced IL-1ß release. These findings highlight that innate immune cells undergoing BAX/BAK-mediated apoptosis have the capacity to generate pro-inflammatory signals and provide an explanation as to why IL-1ß activation is often associated with cellular stress, such as during chemotherapy.


Assuntos
Apoptose , Caspases/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Caspase 3/metabolismo , Caspase 7 , Caspase 8/metabolismo , Ativação Enzimática , Macrófagos/metabolismo , Camundongos , Agregados Proteicos , Proteólise , Transdução de Sinais
11.
J Biol Chem ; 293(39): 15195-15207, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30076215

RESUMO

Toll-like receptors (TLRs) form part of the host innate immune system, in which they act as sensors of microbial and endogenous danger signals. Upon TLR activation, the intracellular Toll/interleukin-1 receptor domains of TLR dimers initiate oligomerization of a multiprotein signaling platform comprising myeloid differentiation primary response 88 (MyD88) and members of the interleukin-1 receptor-associated kinase (IRAK) family. Formation of this myddosome complex initiates signal transduction pathways, leading to the activation of transcription factors and the production of inflammatory cytokines. To date, little is known about the assembly and disassembly of the myddosome and about the mechanisms by which these complexes mediate multiple downstream signaling pathways. Here, we isolated myddosome complexes from whole-cell lysates of TLR-activated primary mouse macrophages and from IRAK reporter macrophages to examine the kinetics of myddosome assembly and disassembly. Using a selective inhibitor of IRAK4's kinase activity, we found that whereas TLR cytokine responses were ablated, myddosome formation was stabilized in the absence of IRAK4's kinase activity. Of note, IRAK4 inhibition had only a minimal effect on NF-κB and mitogen-activated protein kinase (MAPK) signaling. In summary, our results indicate that IRAK4 has a critical scaffold function in myddosome formation and that its kinase activity is dispensable for myddosome assembly and activation of the NF-κB and MAPK pathways but is essential for MyD88-dependent production of inflammatory cytokines. Our findings suggest that the scaffold function of IRAK4 may be an attractive target for treating inflammatory and autoimmune diseases.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/genética , Fator 88 de Diferenciação Mieloide/genética , Receptores Toll-Like/genética , Animais , Humanos , Quinases Associadas a Receptores de Interleucina-1/química , Macrófagos/química , Macrófagos/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Fator 88 de Diferenciação Mieloide/química , NF-kappa B/genética , Fosforilação , Transdução de Sinais , Receptores Toll-Like/química
12.
Methods Mol Biol ; 1784: 35-49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761386

RESUMO

Macrophages are specialized phagocytes that display a variety of important functions for the host immune system. They are particularly important for the recognition of exogenous and endogenous danger signals, forming the defensive front line as part of innate immune response. As such, murine macrophages are commonly used for in vitro cell-based assays examining the mechanisms of innate immune activation, which can require the ongoing breeding and housing of a large number of genetically modified mouse strains. Here, we describe a robust protocol for the generation of immortalized bone marrow-derived macrophages (iBMDMs) from primary murine bone marrow cells. We further provide general protocols for harvesting, freezing, and thawing of bone marrow cells, maintaining iBMDMs in culture and generation of monoclonal iBMDM populations by single-cell cloning.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Células Clonais/citologia , Macrófagos/citologia , Animais , Células da Medula Óssea/imunologia , Imunidade Inata/genética , Macrófagos/imunologia , Camundongos , Fagócitos/citologia
13.
Methods Mol Biol ; 1714: 1-18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177852

RESUMO

This review introduces recent concepts in innate immunity highlighting some of the latest exciting findings. These include: the discovery of the initiator of pyroptosis, Gasdermin D, and mechanisms of inflammatory caspases in innate immune signaling; the formation of oligomeric signalosomes downstream of innate immune receptors; mechanisms that shape innate immune responses, such as cellular homeostasis, cell metabolism, and pathogen viability; rapid methods of cell-to-cell communication; the interplay between the host and its microbiome and the concept of innate immunological memory. Furthermore, we discuss open questions and illustrate how technological advances, such as CRISPR/Cas9, may provide important answers for outstanding questions in the field of innate immunity.


Assuntos
Sistemas CRISPR-Cas , Imunidade Inata , Animais , Comunicação Celular , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Neoplasias/imunologia , Proteínas de Ligação a Fosfato
14.
Methods Mol Biol ; 1714: 97-117, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177858

RESUMO

Innate immune cells are notoriously difficult to transfect; however, retroviruses can be used to stably integrate genes of interest into the host genome of primary or immortalized immune cells resulting in the generation of reporter cells. Here, we provide a detailed protocol covering the production of retroviruses, retroviral infection of innate immune target cells (including isolation and differentiation of murine bone marrow cells to macrophages), and several methods for enrichment of positively transduced cells.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Macrófagos/metabolismo , Retroviridae/genética , Transdução Genética/métodos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Diferenciação Celular , Células Cultivadas , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Imunidade Inata , Macrófagos/citologia , Camundongos
15.
Adv Exp Med Biol ; 1024: 1-35, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28921463

RESUMO

The families of innate immune receptors are the frontline responders to danger. These superheroes of the host immune systems populate innate immune cells, surveying the extracellular environment and the intracellular endolysosomal compartments and cytosol for exogenous and endogenous danger signals. As a collective the innate immune receptors recognise a wide array of stimuli, and in response they initiate specific signalling pathways leading to activation of transcriptional or proteolytic pathways and the production of inflammatory molecules to destroy foreign pathogens and/or resolve tissue injury. In this review, I will give an overview of the innate immune system and the activation and effector functions of the families of receptors it comprises. Current key concepts will be described throughout, including innate immune memory, formation of innate immune receptor signalosomes, inflammasome formation and pyroptosis, methods of extrinsic cell communication and examples of receptor cooperation. Finally, several open questions and future directions in the field of innate immunity will be presented and discussed.


Assuntos
Imunidade Inata/fisiologia , Proteínas NLR/metabolismo , Pirina/metabolismo , Receptores Toll-Like/metabolismo , Vertebrados/imunologia , Animais , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Memória Imunológica/fisiologia , Inflamassomos/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas NLR/genética , Pirina/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/imunologia , Receptores Toll-Like/genética
16.
Proc Natl Acad Sci U S A ; 114(6): E961-E969, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28096356

RESUMO

Necroptosis is a physiological cell suicide mechanism initiated by receptor-interacting protein kinase-3 (RIPK3) phosphorylation of mixed-lineage kinase domain-like protein (MLKL), which results in disruption of the plasma membrane. Necroptotic cell lysis, and resultant release of proinflammatory mediators, is thought to cause inflammation in necroptotic disease models. However, we previously showed that MLKL signaling can also promote inflammation by activating the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome to recruit the adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) and trigger caspase-1 processing of the proinflammatory cytokine IL-1ß. Here, we provide evidence that MLKL-induced activation of NLRP3 requires (i) the death effector four-helical bundle of MLKL, (ii) oligomerization and association of MLKL with cellular membranes, and (iii) a reduction in intracellular potassium concentration. Although genetic or pharmacological targeting of NLRP3 or caspase-1 prevented MLKL-induced IL-1ß secretion, they did not prevent necroptotic cell death. Gasdermin D (GSDMD), the pore-forming caspase-1 substrate required for efficient NLRP3-triggered pyroptosis and IL-1ß release, was not essential for MLKL-dependent death or IL-1ß secretion. Imaging of MLKL-dependent ASC speck formation demonstrated that necroptotic stimuli activate NLRP3 cell-intrinsically, indicating that MLKL-induced NLRP3 inflammasome formation and IL-1ß cleavage occur before cell lysis. Furthermore, we show that necroptotic activation of NLRP3, but not necroptotic cell death alone, is necessary for the activation of NF-κB in healthy bystander cells. Collectively, these results demonstrate the potential importance of NLRP3 inflammasome activity as a driving force for inflammation in MLKL-dependent diseases.


Assuntos
Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases/metabolismo , Animais , Apoptose , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Linhagem Celular Tumoral , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Necrose , Proteínas Quinases/química , Proteínas Quinases/genética , Multimerização Proteica/efeitos dos fármacos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
17.
Methods Mol Biol ; 1417: 145-58, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27221487

RESUMO

Inflammasome assembly results in the formation of a large intracellular protein scaffold driven by the oligomerization of the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC). Following inflammasome activation, ASC polymerizes to form a large singular structure termed the ASC "speck," which is crucial for recruitment of caspase-1 and its inflammatory activity. Hence, due to the considerably large size of these structures, ASC specks can be easily visualized by microscopy as a simple upstream readout for inflammasome activation. Here, we provide two detailed protocols for imaging ASC specks: by (1) live-cell imaging of monocyte/macrophage cell lines expressing a fluorescently tagged version of ASC and (2) immunofluorescence of endogenous ASC in cell lines and human immune cells. In addition, we outline a protocol for increasing the specificity of ASC antibodies for use in immunofluorescence.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/química , Animais , Caspase 1/metabolismo , Células Cultivadas , Imunofluorescência , Humanos , Inflamassomos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , Multimerização Proteica , Células THP-1
18.
Sci Transl Med ; 8(333): 333ra50, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27053774

RESUMO

Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Because cholesterol accumulation and deposition of cholesterol crystals (CCs) trigger a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-ß-cyclodextrin (CD), a compound that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques and promoted liver X receptor (LXR)-mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the antiatherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Macrófagos/metabolismo , beta-Ciclodextrinas/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Aterosclerose/genética , Transporte Biológico/efeitos dos fármacos , Colesterol/metabolismo , Cristalização , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores X do Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , beta-Ciclodextrinas/farmacologia
19.
Sci Signal ; 9(409): ra3, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26732763

RESUMO

Toll-like receptors (TLRs) are a major class of pattern recognition receptors, which mediate the responses of innate immune cells to microbial stimuli. To systematically determine the roles of proteins in canonical TLR signaling pathways, we conducted an RNA interference (RNAi)-based screen in human and mouse macrophages. We observed a pattern of conserved signaling module dependencies across species, but found notable species-specific requirements at the level of individual proteins. Among these, we identified unexpected differences in the involvement of members of the interleukin-1 receptor-associated kinase (IRAK) family between the human and mouse TLR pathways. Whereas TLR signaling in mouse macrophages depended primarily on IRAK4 and IRAK2, with little or no role for IRAK1, TLR signaling and proinflammatory cytokine production in human macrophages depended on IRAK1, with knockdown of IRAK4 or IRAK2 having less of an effect. Consistent with species-specific roles for these kinases, IRAK4 orthologs failed to rescue signaling in IRAK4-deficient macrophages from the other species, and only mouse macrophages required the kinase activity of IRAK4 to mediate TLR responses. The identification of a critical role for IRAK1 in TLR signaling in humans could potentially explain the association of IRAK1 with several autoimmune diseases. Furthermore, this study demonstrated how systematic screening can be used to identify important characteristics of innate immune responses across species, which could optimize therapeutic targeting to manipulate human TLR-dependent outputs.


Assuntos
Macrófagos/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Receptores Toll-Like/genética , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
20.
J Immunol ; 195(9): 4446-55, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26416280

RESUMO

Cytokines and IFNs downstream of innate immune pathways are critical for mounting an appropriate immune response to microbial infection. However, the expression of these inflammatory mediators is tightly regulated, as uncontrolled production can result in tissue damage and lead to chronic inflammatory conditions and autoimmune diseases. Activating transcription factor 3 (ATF3) is an important transcriptional modulator that limits the inflammatory response by controlling the expression of a number of cytokines and chemokines. However, its role in modulating IFN responses remains poorly defined. In this study, we demonstrate that ATF3 expression in macrophages is necessary for governing basal IFN-ß expression, as well as the magnitude of IFN-ß cytokine production following activation of innate immune receptors. We found that ATF3 acted as a transcriptional repressor and regulated IFN-ß via direct binding to a previously unidentified specific regulatory site distal to the Ifnb1 promoter. Additionally, we observed that ATF3 itself is a type I IFN-inducible gene, and that ATF3 further modulates the expression of a subset of inflammatory genes downstream of IFN signaling, suggesting it constitutes a key component of an IFN negative feedback loop. Consistent with this, macrophages deficient in Atf3 showed enhanced viral clearance in lymphocytic choriomeningitis virus and vesicular stomatitis virus infection models. Our study therefore demonstrates an important role for ATF3 in modulating IFN responses in macrophages by controlling basal and inducible levels of IFNß, as well as the expression of genes downstream of IFN signaling.


Assuntos
Fator 3 Ativador da Transcrição/genética , Interferon beta/genética , Macrófagos/metabolismo , Transcriptoma/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células HEK293 , Humanos , Immunoblotting , Interferon beta/metabolismo , Interferon beta/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA