Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 175: 105959, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34756924

RESUMO

Glioblastomas (GBMs), the most frequent brain tumours, are highly invasive and their prognosis is still poor despite the use of combination treatment. MG624 is a 4-oxystilbene derivative that is active on α7- and α9-containing neuronal nicotinic acetylcholine receptor (nAChR) subtypes. Hybridisation of MG624 with a non-nicotinic resveratrol-derived pro-oxidant mitocan has led to two novel compounds (StN-4 and StN-8) that are more potent than MG624 in reducing the viability of GBM cells, but less potent in reducing the viability of mouse astrocytes. Functional analysis of their activity on α7 receptors showed that StN-4 is a silent agonist, whereas StN-8 is a full antagonist, and neither alters intracellular [Ca2+] levels when acutely applied to U87MG cells. After 72 h of exposure, both compounds decreased U87MG cell proliferation, and pAKT and oxphos ATP levels, but only StN-4 led to a significant accumulation of cells in phase G1/G0 and increased apoptosis. One hour of exposure to either compound also decreased the mitochondrial and cytoplasmic ATP production of U87MG cells, and this was not paralleled by any increase in the production of reactive oxygen species. Knocking down the α9 subunit (which is expressed at relatively high levels in U87MG cells) decreased the potency of the effects of both compounds on cell viability, but cell proliferation, ATP production, pAKT levels were unaffected by the presence of the noncell-permeable α7/α9-selective antagonist αBungarotoxin. These last findings suggest that the anti-tumoral effects of StN-4 and StN-8 on GBM cells are not only due to their action on nAChRs, but also to other non-nicotinic mechanisms.


Assuntos
Compostos de Amônio/farmacologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Estilbenos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ligantes , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
2.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831250

RESUMO

Skeletal muscle regeneration is a complex process involving crosstalk between immune cells and myogenic precursor cells, i.e., satellite cells. In this scenario, macrophage recruitment in damaged muscles is a mandatory step for tissue repair since pro-inflammatory M1 macrophages promote the activation of satellite cells, stimulating their proliferation and then, after switching into anti-inflammatory M2 macrophages, they prompt satellite cells' differentiation into myotubes and resolve inflammation. Here, we show that acid sphingomyelinase (ASMase), a key enzyme in sphingolipid metabolism, is activated after skeletal muscle injury induced in vivo by the injection of cardiotoxin. ASMase ablation shortens the early phases of skeletal muscle regeneration without affecting satellite cell behavior. Of interest, ASMase regulates the balance between M1 and M2 macrophages in the injured muscles so that the absence of the enzyme reduces inflammation. The analysis of macrophage populations indicates that these events depend on the altered polarization of M1 macrophages towards an M2 phenotype. Our results unravel a novel role of ASMase in regulating immune response during muscle regeneration/repair and suggest ASMase as a supplemental therapeutic target in conditions of redundant inflammation that impairs muscle recovery.


Assuntos
Macrófagos/metabolismo , Macrófagos/patologia , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Animais , Diferenciação Celular , Polaridade Celular , Proliferação de Células , Ativação Enzimática , Inflamação/patologia , Camundongos Knockout , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Fenótipo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Esfingomielina Fosfodiesterase/deficiência
3.
Antioxidants (Basel) ; 10(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34439445

RESUMO

Aberrant production of reactive oxygen species (ROS) is a common feature of damaged retinal neurons in diabetic retinopathy, and antioxidants may exert both preventive and therapeutic action. To evaluate the beneficial and antioxidant properties of food supplementation with Lisosan G, a powder of bran and germ of grain (Triticum aestivum) obtained by fermentation with selected lactobacillus and natural yeast strains, we used an in vivo model of hyperglycemia-induced retinal damage, the fruit fly Drosophila melanogaster fed with high-sucrose diet. Lisosan G positively affected the visual system of hyperglycemic flies at structural/functional level, decreased apoptosis, and reactivated protective autophagy at the retina internal network. Also, in high sucrose-fed Drosophila, Lisosan G reduced the levels of brain ROS and retina peroxynitrite. The analysis of oxidative stress-related metabolites suggested 7,8-dihydrofolate, uric acid, dihydroorotate, γ-L-glutamyl-L-cysteine, allantoin, cysteinyl-glycine, and quinolate as key mediators of Lisosan G-induced inhibition of neuronal ROS, along with the upregulation of glutathione system. Of note, Lisosan G may impact oxidative stress and the ensuing retinal cell death, also independently from autophagy, although the autophagy-ROS cross-talk is critical. This study demonstrated that the continuous supplementation with the alimentary integrator Lisosan G exerts a robust and multifaceted antioxidant effect on retinal neurons, thus providing efficacious neuroprotection of hyperglycemic eye.

4.
J Neurochem ; 157(4): 1253-1269, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33448385

RESUMO

Mutations in the X-linked CDKL5 gene cause CDKL5 deficiency disorder (CDD), a severe neurodevelopmental condition mainly characterized by infantile epileptic encephalopathy, intellectual disability, and autistic features. The molecular mechanisms underlying the clinical symptoms remain largely unknown and the identification of reliable biomarkers in animal models will certainly contribute to increase our comprehension of CDD as well as to assess the efficacy of therapeutic strategies. Here, we used different Magnetic Resonance (MR) methods to disclose structural, functional, or metabolic signatures of Cdkl5 deficiency in the brain of adult mice. We found that loss of Cdkl5 does not cause cerebral atrophy but affects distinct brain areas, particularly the hippocampus. By in vivo proton-MR spectroscopy (MRS), we revealed in the Cdkl5 null brain a metabolic dysregulation indicative of mitochondrial dysfunctions. Accordingly, we unveiled a significant reduction in ATP levels and a decrease in the expression of complex IV of mitochondrial electron transport chain. Conversely, the number of mitochondria appeared preserved. Importantly, we reported a significant defect in the activation of one of the major regulators of cellular energy balance, the adenosine monophosphate-activated protein kinase (AMPK), that might contribute to the observed metabolic impairment and become an interesting therapeutic target for future preclinical trials. In conclusion, MRS revealed in the Cdkl5 null brain the presence of a metabolic dysregulation suggestive of a mitochondrial dysfunction that permitted to foster our comprehension of Cdkl5 deficiency and brought our interest towards targeting mitochondria as therapeutic strategy for CDD.


Assuntos
Encéfalo/metabolismo , Síndromes Epilépticas , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Síndromes Epilépticas/metabolismo , Síndromes Epilépticas/patologia , Espectroscopia de Ressonância Magnética , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/patologia , Espasmos Infantis/metabolismo , Espasmos Infantis/patologia
5.
Cancers (Basel) ; 11(9)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505859

RESUMO

X-linked inhibitor of apoptosis protein (XIAP) is an emerging crucial therapeutic target in cancer. We report on the discovery and characterisation of small organic molecules from Piper genus plants exhibiting XIAP antagonism, namely erioquinol, a quinol substituted in the 4-position with an alkenyl group and the alkenylphenols eriopodols A-C. Another isolated compound was originally identified as gibbilimbol B. Erioquinol was the most potent inhibitor of human cancer cell viability when compared with gibbilimbol B and eriopodol A was listed as intermediate. Gibbilimbol B and eriopodol A induced apoptosis through mitochondrial permeabilisation and caspase activation while erioquinol acted on cell fate via caspase-independent/non-apoptotic mechanisms, likely involving mitochondrial dysfunctions and aberrant generation of reactive oxygen species. In silico modelling and molecular approaches suggested that all molecules inhibit XIAP by binding to XIAP-baculoviral IAP repeat domain. This demonstrates a novel aspect of XIAP as a key determinant of tumour control, at the molecular crossroad of caspase-dependent/independent cell death pathway and indicates molecular aspects to develop tumour-effective XIAP antagonists.

6.
Cancers (Basel) ; 11(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461915

RESUMO

Drug resistance remains a major obstacle in cancer treatment. Because mitochondria mediate metabolic reprogramming in cancer drug resistance, we focused on these organelles in doxorubicin sensitive and resistant colon carcinoma cells. We employed soft X-ray cryo nano-tomography to map three-dimensionally these cells at nanometer-resolution and investigate the correlation between mitochondrial morphology and drug resistance phenotype. We have identified significant structural differences in the morphology of mitochondria in the two strains of cancer cells, as well as lower amounts of Reactive oxygen species (ROS) in resistant than in sensitive cells. We speculate that these features could elicit an impaired mitochondrial communication in resistant cells, thus preventing the formation of the interconnected mitochondrial network as clearly detected in the sensitive cells. In fact, the qualitative and quantitative three-dimensional assessment of the mitochondrial morphology highlights a different structural organization in resistant cells, which reflects a metabolic cellular adaptation functional to survive to the offense exerted by the antineoplastic treatment.

7.
Front Chem ; 7: 463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316972

RESUMO

We synthesized and characterized MOMO as a new small molecule analog of the cytotoxic natural product climacostol efficiently activated in mild extracellular acidosis. The synthesis of MOMO had a key step in the Wittig olefination for the construction of the carbon-carbon double bond in the alkenyl moiety of climacostol. The possibility of obtaining the target (Z)-alkenyl MOMO derivative in very good yield and without presence of the less active (E)-diastereomer was favored from the methoxymethyl ether (MOM)-protecting group of hydroxyl functions in aromatic ring of climacostol aldehyde intermediate. Of interest, the easy removal of MOM-protecting group in a weakly acidic environment allowed us to obtain a great quantity of climacostol in biologically active (Z)-configuration. Results obtained in free-living ciliates that share the same micro-environment of the climacostol natural producer Climacostomum virens demonstrated that MOMO is well-tolerated in a physiological environment, while its cytotoxicity is rapidly and efficiently triggered at pH 6.3. In addition, the cytostatic vs. cytotoxic effects of acidified-MOMO can be modulated in a dose-dependent manner. In mouse melanoma cells, MOMO displayed a marked pH-sensitivity since its cytotoxic and apoptotic effects become evident only in mild extracellular acidosis. Data also suggested MOMO being preferentially activated in the unique extra-acidic microenvironment that characterizes tumoural cells. Finally, the use of the model organism Drosophila melanogaster fed with an acidic diet supported the efficient activity and oral delivery of MOMO molecule in vivo. MOMO affected oviposition of mating adults and larvae eclosion. Reduced survival of flies was due to lethality during the larval stages while emerging larvae retained their ability to develop into adults. Interestingly, the gut of eclosed larvae exhibited an extended damage (cell death by apoptosis) and the brain tissue was also affected (reduced mitosis), demonstrating that orally activated MOMO efficiently targets different tissues of the developing fly. These results provided a proof-of-concept study on the pH-dependence of MOMO effects. In this respect, MOM-protection emerges as a potential prodrug strategy which deserves to be further investigated for the generation of efficient pH-sensitive small organic molecules as pharmacologically active cytotoxic compounds.

8.
Autophagy ; 15(1): 58-77, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30081710

RESUMO

Macroautophagy/autophagy is emerging as an important process in adult muscle stem cells functions: it regulates metabolic reprogramming during activation from a quiescent state, maintains stemness and prevents senescence. We now show that autophagy is specifically required for neonatal myogenesis and muscle development. Specific deletion of Atg7 in PAX7+ (paired box 7) precursors led in mice to a dwarf phenotype, with an effect restricted to the neonatal phase of muscle development. Atg7 knockdown suppressed neonatal satellite cell (nSC) proliferation and differentiation, downregulating the GH-IGF1 functions. When we disrupted autophagy, NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) accumulated in muscle and nSCs and negatively modulated DDIT3/CHOP (DNA-damage inducible transcript 3) expression. Lower levels of DDIT3 were responsible for reduced GHR expression leading to impaired local production of IGF1. Our results conclusively identify a novel autophagy-dependent pathway that regulates nSC behavior and indicate that autophagy is required for skeletal muscle development in the neonatal phase. Abbreviations: AKT/protein kinase B: Thymoma viral proto-oncogene; ASCs: adult stem cells; ATF4: activating transcription factor 4; ATG7: autophagy related 7; BAT: brown adipose tissue; BMP: bone morphogenetic protein; CEBPB: CCAAT/enhancer binding protein (C/EBP), beta; CSA: cross sectional area; CTNNB1: catenin (cadherin associated protein), beta 1; DDIT3: DNA-damage inducible transcript 3; DM: differentiation medium; E: embryonic stage; EIF2AK3/PERK; EIF4EBP1: eukaryotic translation initiation factor 2 alpha kinase 3; eukaryotic translation initiation factor 4E binding protein 1; ER: endoplasmic reticulum; FGF21: fibroblast growth factor 21; GH: growth hormone; GHR: growth hormone receptor; HSCs: hematopoietic stem cells; IGF1: insulin-like growth factor 1; ITGAM: integrin alpha M; KEAP1: kelch-like ECH-associated protein 1; LY6A/Sca-1; MAP1LC3: lymphocyte antigen 6 complex, locus A; microtubule-associated protein 1 light chain 3; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; miRNAs: microRNAs; MSCs: mesenchymal stem cells; MTOR: mechanistic target of rapamycin kinase; mtUPR: mitochondrial unfolded protein response; MYF5: myogenic factor 5; MYH: myosin, heavy polypeptide; MYOD1: myogenic differentiation 1; MYOG: myogenin; NFE2L2: nuclear factor, erythroid derived 2, like 2; nSC: neonatal satellite cells; NSCs: neuronal stem cells; P: postnatal day; PAX7: paired box 7; PECAM1: platelet/endothelial cell adhesion molecule 1; PPARG: peroxisome proliferator activated receptor gamma; PTPRC: protein tyrosine phosphatase, receptor type, C; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SCs: adult satellite cells; SQSTM1: sequestosome 1; STAT5: signal transducer and activator of transcription 5; TGFB1: transforming growth factor beta 1; WAT: white adipose tissue; WT: wild type.


Assuntos
Autofagia/genética , Fator de Crescimento Insulin-Like I/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Fator 1 Relacionado a NF-E2/genética , Fator de Transcrição CHOP/genética , Animais , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Fator 1 Relacionado a NF-E2/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais/genética , Fator de Transcrição CHOP/metabolismo
9.
Cell Death Dis ; 10(1): 10, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30584259

RESUMO

Autophagy occurs at a basal level in all eukaryotic cells and may support cell survival or activate death pathways. Due to its pathophysiologic significance, the autophagic machinery is a promising target for the development of multiple approaches for anti-neoplastic agents. We have recently described the cytotoxic and pro-apoptotic mechanisms, targeting the tumour suppressor p53, of climacostol, a natural product of the ciliated protozoan Climacostomum virens. We report here on how climacostol regulates autophagy and the involvement of p53-dependent mechanisms. Using both in vitro and in vivo techniques, we show that climacostol potently and selectively impairs autophagy in multiple tumour cells that are committed to die by apoptosis. In particular, in B16-F10 mouse melanomas climacostol exerts a marked and sustained accumulation of autophagosomes as the result of dysfunctional autophagic degradation. We also provide mechanistic insights showing that climacostol affects autophagosome turnover via p53-AMPK axis, although the mTOR pathway unrelated to p53 levels plays a role. In particular, climacostol activated p53 inducing the upregulation of p53 protein levels in the nuclei through effects on p53 stability at translational level, as for instance the phosphorylation at Ser15 site. Noteworthy, AMPKα activation was the major responsible of climacostol-induced autophagy disruption in the absence of a key role regulating cell death, thus indicating that climacostol effects on autophagy and apoptosis are two separate events, which may act independently on life/death decisions of the cell. Since the activation of p53 system is at the molecular crossroad regulating both the anti-autophagic action of climacostol and its role in the apoptosis induction, it might be important to explore the dual targeting of autophagy and apoptosis with agents acting on p53 for the selective killing of tumours. These findings also suggest the efficacy of ciliate bioactive molecules to identify novel lead compounds in drug discovery and development.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Resorcinóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia
10.
J Med Chem ; 61(23): 10531-10544, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30403486

RESUMO

Adenocarcinoma and glioblastoma cell lines express α7- and α9α10-containing nicotinic acetylcholine receptors (nAChRs), whose activation promotes tumor cell growth. On these cells, the triethylammoniumethyl ether of 4-stilbenol MG624, a known selective antagonist of α7 and α9α10 nAChRs, has antiproliferative activity. The structural analogy of MG624 with the mitocan RDM-4'BTPI, triphenylphosphoniumbutyl ether of pterostilbene, suggested us that molecular hybridization among their three substructures (stilbenoxy residue, alkylene linker, and terminal onium) and elongation of the alkylene linker might result in novel antitumor agents with higher potency and selectivity. We found that lengthening the ethylene bridge in the triethylammonium derivatives results in more potent and selective toxicity toward adenocarcinoma and glioblastoma cells, which was paralleled by increased α7 and α9α10 nAChR antagonism and improved ability of reducing mitochondrial ATP production. Elongation of the alkylene linker was advantageous also for the triphenylphosphonium derivatives resulting in a generalized enhancement of antitumor activity, associated with increased mitotoxicity.


Assuntos
Glioblastoma/patologia , Espécies Reativas de Oxigênio/química , Receptores Nicotínicos/metabolismo , Estilbenos/química , Estilbenos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos
11.
Front Immunol ; 9: 1186, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896202

RESUMO

Tumor microenvironment is fundamental for cancer progression and chemoresistance. Among stromal cells tumor-associated macrophages (TAMs) represent the largest population of infiltrating inflammatory cells in malignant tumors, promoting their growth, invasion, and immune evasion. M2-polarized TAMs are endowed with the nitric oxide (NO)-generating enzyme inducible nitric oxide synthase (iNOS). NO has divergent effects on tumors, since it can either stimulate tumor cells growth or promote their death depending on the source of it; likewise the role of iNOS in cancer differs depending on the cell type. The role of NO generated by TAMs has not been investigated. Using different tumor models in vitro and in vivo we found that NO generated by iNOS of M2-polarized TAMs is able to protect tumor cells from apoptosis induced by the chemotherapeutic agent cisplatin (CDDP). Here, we demonstrate that the protective effect of NO depends on the inhibition of acid sphingomyelinase (A-SMase), which is activated by CDDP in a pathway involving the death receptor CD95. Mechanistic insights indicate that NO actions occur via generation of cyclic GMP and activation of protein kinase G (PKG), inducing phosphorylation of syntaxin 4 (synt4), a SNARE protein responsible for A-SMase trafficking and activation. Noteworthy, phosphorylation of synt4 at serine 78 by PKG is responsible for the proteasome-dependent degradation of synt4, which limits the CDDP-induced exposure of A-SMase to the plasma membrane of tumor cells. This inhibits the cytotoxic mechanism of CDDP reducing A-SMase-triggered apoptosis. This is the first demonstration that endogenous NO system is a key mechanism through which TAMs protect tumor cells from chemotherapeutic drug-induced apoptosis. The identification of the pathway responsible for A-SMase activity downregulation in tumors leading to chemoresistance warrants further investigations as a means to identify new anti-cancer molecules capable of specifically inhibiting synt4 degradation.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Glioma/imunologia , Macrófagos/imunologia , Proteínas de Neoplasias/imunologia , Óxido Nítrico/imunologia , Proteínas Qa-SNARE/imunologia , Esfingomielina Fosfodiesterase/imunologia , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Humanos , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Proteínas Qa-SNARE/genética , Esfingomielina Fosfodiesterase/genética
12.
Biomed Res Int ; 2017: 5856071, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28593174

RESUMO

Neuropeptides drive a wide diversity of biological actions and mediate multiple regulatory functions involving all organ systems. They modulate intercellular signalling in the central and peripheral nervous systems as well as the cross talk among nervous and endocrine systems. Indeed, neuropeptides can function as peptide hormones regulating physiological homeostasis (e.g., cognition, blood pressure, feeding behaviour, water balance, glucose metabolism, pain, and response to stress), neuroprotection, and immunomodulation. We aim here to describe the recent advances on the role exerted by neuropeptides in the control of autophagy and its molecular mechanisms since increasing evidence indicates that dysregulation of autophagic process is related to different pathological conditions, including neurodegeneration, metabolic disorders, and cancer.


Assuntos
Autofagia , Doenças Metabólicas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Neuropeptídeos/metabolismo , Animais , Humanos
13.
Nat Commun ; 7: 13818, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991503

RESUMO

Active targeting of nanoparticles to tumours can be achieved by conjugation with specific antibodies. Specific active targeting of the HER2 receptor is demonstrated in vitro and in vivo with a subcutaneous MCF-7 breast cancer mouse model with trastuzumab-functionalized gold nanoparticles. The number of attached antibodies per nanoparticle was precisely controlled in a way that each nanoparticle was conjugated with either exactly one or exactly two antibodies. As expected, in vitro we found a moderate increase in targeting efficiency of nanoparticles with two instead of just one antibody attached per nanoparticle. However, the in vivo data demonstrate that best effect is obtained for nanoparticles with only exactly one antibody. There is indication that this is based on a size-related effect. These results highlight the importance of precisely controlling the ligand density on the nanoparticle surface for optimizing active targeting, and that less antibodies can exhibit more effect.


Assuntos
Anticorpos/administração & dosagem , Coloides , Nanopartículas/administração & dosagem , Neoplasias Experimentais/terapia , Animais , Anticorpos/imunologia , Anticorpos Monoclonais , Linhagem Celular Tumoral , Sobrevivência Celular , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imunoterapia/métodos , Camundongos
14.
Oncotarget ; 7(18): 24995-5009, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27107419

RESUMO

The sphingolipid metabolising enzyme Acid Sphingomyelinase (A-SMase) has been recently shown to inhibit melanoma progression and correlate inversely to tumour grade. In this study we have investigated the role of A-SMase in the chemo-resistance to anticancer treatmentusing mice with melanoma allografts and melanoma cells differing in terms of expression/activity of A-SMase. Since autophagy is emerging as a key mechanism in tumour growth and chemo-resistance, we have also investigated whether an action of A-SMase in autophagy can explain its role. Melanoma sensitivity to chemotherapeutic agent cisplatin in terms of cell viability/apoptosis, tumour growth, and animal survival depended directly on the A-SMase levels in tumoural cells. A-SMase action was due to inhibition of autophagy through activation of Akt/mammalian target of rapamycin (mTOR) pathway. Treatment of melanoma-bearing mice with the autophagy inhibitor chloroquine restored sensitivity to cisplatin of tumours expressing low levels of A-SMase while no additive effects were observed in tumours characterised by sustained A-SMase levels. The fact that A-SMase in melanomas affects mTOR-regulated autophagy and plays a central role in cisplatin efficacy encourages pre-clinical testing on the modulation of A-SMase levels/activity as possible novel anti-neoplastic strategy.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Cisplatino/farmacologia , Melanoma/enzimologia , Esfingomielina Fosfodiesterase/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Melanoma/patologia , Camundongos , Serina-Treonina Quinases TOR/metabolismo
15.
Front Cell Neurosci ; 9: 236, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26157361

RESUMO

Accumulating evidence indicates that the endocrine and immune systems engage in complex cross-talks in which a prominent role is played by thyroid hormones (THs). The increase of resident vs. monocyte recruited macrophages was shown to be an important effector of the TH 3,3',5'-Triiodo-L-thyronine (T3)-induced protection against inflammation and a key role of T3 in inhibiting the differentiation of peripheral monocytes into macrophages was observed. Herein, we report on the role of T3 as a modulator of microglia, the specialized macrophages of the central nervous system (CNS). Mounting evidence supports a role of microglia and macrophages in the growth and invasion of malignant glioma. In this respect, we unveil the putative involvement of T3 in the microglia/glioma cell communication. Since THs are known to cross the blood-brain barrier, we suggest that T3 not only exerts a direct modulation of brain cancer cell itself but also indirectly promotes glioma growth through a modulation of microglia. Our observations expand available information on the role of TH system in glioma and its microenvironment and highlight the endocrine modulation of microglia as an important target for future therapeutic development of glioma treatments.

16.
Mediators Inflamm ; 2015: 370482, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26101462

RESUMO

The inflammatory microenvironment induces tumours to acquire an aggressive and immunosuppressive behaviour. Since acid sphingomyelinase (A-SMase) downregulation in melanoma was shown to determine a malignant phenotype, we aimed here to elucidate the role of A-SMase in the regulation of tumour immunogenic microenvironment using in vivo melanoma models in which A-SMase was either downregulated or maintained at constitutively high levels. We found high levels of inflammatory factors in low A-SMase expressing tumours, which also displayed an immunosuppressive/protumoural microenvironment: high levels of myeloid-derived suppressor cells (MDSCs) and regulatory T lymphocytes (Tregs), as well as low levels of dendritic cells (DCs). In contrast, the restoration of A-SMase in melanoma cells not only reduced tumour growth and immunosuppression, but also induced a high recruitment at tumour site of effector immune cells with an antitumoural function. Indeed, we observed a poor homing of MDSCs and Tregs and the increased recruitment of CD8(+) and CD4(+) T lymphocytes as well as the infiltration of DCs and CD8(+)/CD44(high) T lymphocytes. This study demonstrates that change of A-SMase expression in cancer cells is sufficient per se to tune in vivo melanoma growth and that A-SMase levels modulate immune cells at tumour site. This may be taken into consideration in the setting of therapeutic strategies.


Assuntos
Reprogramação Celular , Melanoma Experimental/imunologia , Esfingomielina Fosfodiesterase/fisiologia , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Feminino , Tolerância Imunológica , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL
17.
Apoptosis ; 20(5): 635-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25666706

RESUMO

Autophagy, the main intracellular process of cytoplasmic material degradation, is involved in cell survival and death. Autophagy is regulated at various levels and novel modulators of its function are being continuously identified. An intriguing recent observation is that among these modulators is the sphingolipid metabolising enzyme, Acid Sphingomyelinase (A-SMase), already known to play a fundamental role in apoptotic cell death participating in several pathophysiological conditions. In this review we analyse and discuss the relationship between autophagy and A-SMase describing how A-SMase may regulate it and defining, for the first time, the existence of an A-SMase-autophagy axis. The imbalance of this axis plays a role in cancer, nervous system, cardiovascular, and hepatic disorders.


Assuntos
Autofagia , Esfingomielina Fosfodiesterase/fisiologia , Animais , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/patologia , Doenças do Sistema Nervoso Central/enzimologia , Doenças do Sistema Nervoso Central/patologia , Humanos , Neoplasias/enzimologia , Neoplasias/patologia
18.
Am J Pathol ; 184(1): 230-47, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24215914

RESUMO

The endocrine system participates in regulating macrophage maturation, although little is known about the modulating role of the thyroid hormones. In vitro results demonstrate a negative role of one such hormone, triiodothyronine (T3), in triggering the differentiation of bone marrow-derived monocytes into unpolarized macrophages. T3-induced macrophages displayed a classically activated (M1) signature. A T3-induced M1-priming effect was also observed on polarized macrophages because T3 reverses alternatively activated (M2) activation, whereas it enhances that of M1 cells. In vivo, circulating T3 increased the content of the resident macrophages in the peritoneal cavity, whereas it reduced the content of the recruited monocyte-derived cells. Of interest, T3 significantly protected mice against endotoxemia induced by lipopolysaccharide i.p. injection; in these damaged animals, decreased T3 levels increased the recruited (potentially damaging) cells, whereas restoring T3 levels decreased recruited and increased resident (potentially beneficial) cells. These data suggest that the anti-inflammatory effect of T3 is coupled to the modulation of peritoneal macrophage content, in a context not fully explained by the M1/M2 framework. Thyroid hormone receptor expression analysis and the use of different thyroid hormone receptor antagonists suggest thyroid hormone receptor ß1 as the major player mediating T3 effects on macrophages. The novel homeostatic link between thyroid hormones and the pathophysiological role of macrophages opens new perspectives on the interactions between the endocrine and immune systems.


Assuntos
Inflamação/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Tri-Iodotironina/imunologia , Tri-Iodotironina/metabolismo , Animais , Western Blotting , Diferenciação Celular/imunologia , Células Cultivadas , Feminino , Citometria de Fluxo , Imunofenotipagem , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Clin Dev Immunol ; 2013: 309302, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24078816

RESUMO

Sphingolipid metabolism is deeply regulated along the differentiation and development of the central nervous system (CNS), and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system. Microglia are resident macrophages of the CNS involved in general maintenance of neural environment. Modulations in microglia phenotypes may contribute to pathogenic forms of inflammation. Since defects in macrophage/microglia activity contribute to neurodegenerative diseases, it will be essential to systematically identify the components of the microglial cell response that contribute to disease progression. In such complex processes, the sphingolipid systems have recently emerged to play important roles, thus appearing as a key new player in CNS disorders. This review provides a rationale for harnessing the sphingolipid metabolic pathway as a potential target against neuroinflammation.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Esfingolipídeos/metabolismo , Animais , Encéfalo/imunologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia , Humanos , Inflamação/imunologia , Macrófagos/imunologia , Microglia/imunologia , Microglia/metabolismo
20.
ACS Nano ; 7(7): 6092-102, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23758591

RESUMO

A great challenge in nanodiagnostics is the identification of new strategies aimed to optimize the detection of primary breast cancer and metastases by the employment of target-specific nanodevices. At present, controversial proof has been provided on the actual importance of surface functionalization of nanoparticles to improve their in vivo localization at the tumor. In the present paper, we have designed and developed a set of multifunctional nanoprobes, modified with three different variants of a model antibody, that is, the humanized monocolonal antibody trastuzumab (TZ), able to selectively target the HER2 receptor in breast cancer cells. Assuming that nanoparticle accumulation in target cells is strictly related to their physicochemical properties, we performed a comparative study of internalization, trafficking, and metabolism in MCF7 cells of multifunctional nanoparticles (MNP) functionalized with TZ or with alternative lower molecular weight variants of the monoclonal antibody, such as the half-chain (HC) and scFv fragments (scFv). Hence, to estimate to what extent the structure of the surface bioligand affects the targeting efficiency of the nanoconjugate, three cognate nanoconstructs were designed, in which only the antibody form was differentiated while the nanoparticle core was maintained unvaried, consisting of an iron oxide spherical nanocrystal coated with an amphiphilic polymer shell. In vitro, in vivo, and ex vivo analyses of the targeting efficiency and of the intracellular fate of MNP-TZ, MNP-HC, and MNP-scFv suggested that the highly stable MNP-HC is the best candidate for application in breast cancer detection. Our results provided evidence that, in this case, active targeting plays an important role in determining the biological activity of the nanoconstruct.


Assuntos
Anticorpos/química , Anticorpos/imunologia , Membrana Celular/química , Membrana Celular/imunologia , Nanocápsulas/química , Humanos , Células MCF-7 , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA