Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 857(Pt 1): 159324, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36216058

RESUMO

In addition to endangering sea traffic, cable routes, and wind farms, sunken warship wrecks with dangerous cargo, fuel, or munitions on board may emerge as point sources for environmental damage. Energetic compounds such as TNT (which could leak from these munitions) are known for their toxicity, mutagenicity, and carcinogenicity. These compounds may cause potential adverse effects on marine life via contamination of the marine ecosystem, and their entry into the marine and human food chain could directly affect human health. To ascertain the impending danger of an environmental catastrophe posed by sunken warships, the North Sea Wrecks (NSW) project (funded by the Interreg North Sea Region Program) was launched in 2018. Based on historical data (derived from military archives) including the calculated amount of munitions still on board, its known location and accessibility, the German World War II ship "Vorpostenboot 1302" (former civilian name - "JOHN MAHN") was selected as a case study to investigate the leakage and distribution of toxic explosives in the marine environment. The wreck site and surrounding areas were mapped in great detail by scientific divers and a multibeam echosounder. Water and sediment samples were taken in a cross-shaped pattern around the wreck. To assess a possible entry into the marine food chain, caged mussels were exposed at the wreck, and wild fish (pouting), a sedentary species that stays locally at the wreck, were caught. All samples were analyzed for the presence of TNT and derivatives thereof by GC-MS/MS analysis. As a result, we could provide evidence that sunken warship wrecks emerge as a point source of contamination with nitroaromatic energetic compounds leaking from corroding munitions cargo still on board. Not only did we find these explosive substances in bottom water and sediment samples around the wreck, but also in the caged mussels as well as in wild fish living at the wreck. Fortunately so far, the concentrations found in mussel meat and fish filet were only in the one-digit ng per gram range thus indicating no current concern for the human seafood consumer. However, in the future the situation may worsen as the corrosion continues. From our study, it is proposed that wrecks should not only be ranked according to critical infrastructure and human activities at sea, but also to the threats they pose to the environment and the human seafood consumer.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Humanos , Ecossistema , II Guerra Mundial , Fontes Geradoras de Energia , Espectrometria de Massas em Tandem , Vento , Peixes , Água/análise , Poluentes Químicos da Água/análise
2.
Harmful Algae ; 102: 101989, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33875185

RESUMO

Harmful algal blooms (HAB) are recurrent phenomena in northern Europe along the coasts of the Baltic Sea, Kattegat-Skagerrak, eastern North Sea, Norwegian Sea and the Barents Sea. These HABs have caused occasional massive losses for the aquaculture industry and have chronically affected socioeconomic interests in several ways. This status review gives an overview of historical HAB events and summarises reports to the Harmful Algae Event Database from 1986 to the end of year 2019 and observations made in long term monitoring programmes of potentially harmful phytoplankton and of phycotoxins in bivalve shellfish. Major HAB taxa causing fish mortalities in the region include blooms of the prymnesiophyte Chrysochromulina leadbeateri in northern Norway in 1991 and 2019, resulting in huge economic losses for fish farmers. A bloom of the prymesiophyte Prymnesium polylepis (syn. Chrysochromulina polylepis) in the Kattegat-Skagerrak in 1988 was ecosystem disruptive. Blooms of the prymnesiophyte Phaeocystis spp. have caused accumulations of foam on beaches in the southwestern North Sea and Wadden Sea coasts and shellfish mortality has been linked to their occurrence. Mortality of shellfish linked to HAB events has been observed in estuarine waters associated with influx of water from the southern North Sea. The first bloom of the dictyochophyte genus Pseudochattonella was observed in 1998, and since then such blooms have been observed in high cell densities in spring causing fish mortalities some years. Dinoflagellates, primarily Dinophysis spp., intermittently yield concentrations of Diarrhetic Shellfish Toxins (DST) in blue mussels, Mytilus edulis, above regulatory limits along the coasts of Norway, Denmark and the Swedish west coast. On average, DST levels in shellfish have decreased along the Swedish and Norwegian Skagerrak coasts since approximately 2006, coinciding with a decrease in the cell abundance of D. acuta. Among dinoflagellates, Alexandrium species are the major source of Paralytic Shellfish Toxins (PST) in the region. PST concentrations above regulatory levels were rare in the Skagerrak-Kattegat during the three decadal review period, but frequent and often abundant findings of Alexandrium resting cysts in surface sediments indicate a high potential risk for blooms. PST levels often above regulatory limits along the west coast of Norway are associated with A. catenella (ribotype Group 1) as the main toxin producer. Other Alexandrium species, such as A. ostenfeldii and A. minutum, are capable of producing PST among some populations but are usually not associated with PSP events in the region. The cell abundance of A. pseudogonyaulax, a producer of the ichthyotoxin goniodomin (GD), has increased in the Skagerrak-Kattegat since 2010, and may constitute an emerging threat. The dinoflagellate Azadinium spp. have been unequivocally linked to the presence of azaspiracid toxins (AZT) responsible for Azaspiracid Shellfish Poisoning (AZP) in northern Europe. These toxins were detected in bivalve shellfish at concentrations above regulatory limits for the first time in Norway in blue mussels in 2005 and in Sweden in blue mussels and oysters (Ostrea edulis and Crassostrea gigas) in 2018. Certain members of the diatom genus Pseudo-nitzschia produce the neurotoxin domoic acid and analogs known as Amnesic Shellfish Toxins (AST). Blooms of Pseudo-nitzschia were common in the North Sea and the Skagerrak-Kattegat, but levels of AST in bivalve shellfish were rarely above regulatory limits during the review period. Summer cyanobacteria blooms in the Baltic Sea are a concern mainly for tourism by causing massive fouling of bathing water and beaches. Some of the cyanobacteria produce toxins, e.g. Nodularia spumigena, producer of nodularin, which may be a human health problem and cause occasional dog mortalities. Coastal and shelf sea regions in northern Europe provide a key supply of seafood, socioeconomic well-being and ecosystem services. Increasing anthropogenic influence and climate change create environmental stressors causing shifts in the biogeography and intensity of HABs. Continued monitoring of HAB and phycotoxins and the operation of historical databases such as HAEDAT provide not only an ongoing status report but also provide a way to interpret causes and mechanisms of HABs.


Assuntos
Ecossistema , Proliferação Nociva de Algas , Animais , Cães , Europa (Continente) , Nodularia , Noruega , Oceanos e Mares , Suécia
3.
Sci Rep ; 9(1): 675, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679557

RESUMO

Sea spray aerosols (SSAs) have profound effects on our climate and ecosystems. They also contain microbiota and biogenic molecules which could affect human health. Yet the exposure and effects of SSAs on human health remain poorly studied. Here, we exposed human lung cancer cells to extracts of a natural sea spray aerosol collected at the seashore in Belgium, a laboratory-generated SSA, the marine algal toxin homoyessotoxin and a chemical inhibitor of the mammalian target of rapamycin (mTOR) pathway. We observed significant increased expression of genes related to the mTOR pathway and Proprotein convertase subtilisin/kexin type 9 (PCSK9) after exposure to homoyessotoxin and the laboratory-generated SSA. In contrast, we observed a significant decrease in gene expression in the mTOR pathway and of PCSK9 after exposure to the natural SSA and the mTOR inhibitor, suggesting induction of apoptosis. Our results indicate that marine biogenics in SSAs interact with PCSK9 and the mTOR pathway and can be used in new potential pharmaceutical applications. Overall, our results provide a substantial molecular evidence base for potential beneficial health effects at environmentally relevant concentrations of natural SSAs.


Assuntos
Aerossóis/química , Aerossóis/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Oxocinas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Células A549 , Bélgica , Dinoflagellida/química , Humanos , Oceanos e Mares , Pró-Proteína Convertase 9/genética , Água do Mar/química
4.
Anal Chem ; 89(7): 4161-4168, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28256828

RESUMO

In this work, the three-dimensional elemental distribution profile within the freshwater crustacean Ceriodaphnia dubia was constructed at a spatial resolution down to 5 µm via a data fusion approach employing state-of-the-art laser ablation-inductively coupled plasma-time-of-flight mass spectrometry (LA-ICP-TOFMS) and laboratory-based absorption microcomputed tomography (µ-CT). C. dubia was exposed to elevated Cu, Ni, and Zn concentrations, chemically fixed, dehydrated, stained, and embedded, prior to µ-CT analysis. Subsequently, the sample was cut into 5 µm thin sections that were subjected to LA-ICP-TOFMS imaging. Multimodal image registration was performed to spatially align the 2D LA-ICP-TOFMS images relative to the corresponding slices of the 3D µ-CT reconstruction. Mass channels corresponding to the isotopes of a single element were merged to improve the signal-to-noise ratios within the elemental images. In order to aid the visual interpretation of the data, LA-ICP-TOFMS data were projected onto the µ-CT voxels representing tissue. Additionally, the image resolution and elemental sensitivity were compared to those obtained with synchrotron radiation based 3D confocal µ-X-ray fluorescence imaging upon a chemically fixed and air-dried C. dubia specimen.


Assuntos
Imageamento Tridimensional , Imagem Multimodal , Animais , Cladocera , Cobre/análise , Terapia a Laser , Espectrometria de Massas , Níquel/análise , Distribuição Tecidual , Microtomografia por Raio-X , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA