Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biol Open ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713004

RESUMO

Recent research has shown that membrane trafficking plays an important role in canonical Wnt signaling through sequestration of the ß-catenin destruction complex inside multivesicular bodies (MVBs) and lysosomes. In this study, we introduce Ouabain, an inhibitor of the Na,K-ATPase pump that establishes electric potentials across membranes, as a potent inhibitor of Wnt signaling. We find that Na,K-ATPase levels are elevated in advanced colon carcinoma, that this enzyme is elevated in cancer cells with constitutively activated Wnt pathway and is activated by GSK3 inhibitors that increase macropinocytosis. Ouabain blocks macropinocytosis, which is an essential step in Wnt signaling, probably explaining the strong effects of Ouabain on this pathway. In Xenopus embryos, brief Ouabain treatment at the 32-cell stage, critical for the earliest Wnt signal in development-inhibited brains, could be reversed by treatment with Lithium chloride, a Wnt mimic. Inhibiting membrane trafficking may provide a way of targeting Wnt-driven cancers.


Assuntos
Neoplasias do Colo , Pinocitose , ATPase Trocadora de Sódio-Potássio , Via de Sinalização Wnt , Animais , Humanos , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/etiologia , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Xenopus
2.
Mol Oncol ; 18(2): 245-279, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135904

RESUMO

Analyses of inequalities related to prevention and cancer therapeutics/care show disparities between countries with different economic standing, and within countries with high Gross Domestic Product. The development of basic technological and biological research provides clinical and prevention opportunities that make their implementation into healthcare systems more complex, mainly due to the growth of Personalized/Precision Cancer Medicine (PCM). Initiatives like the USA-Cancer Moonshot and the EU-Mission on Cancer and Europe's Beating Cancer Plan are initiated to boost cancer prevention and therapeutics/care innovation and to mitigate present inequalities. The conference organized by the Pontifical Academy of Sciences in collaboration with the European Academy of Cancer Sciences discussed the inequality problem, dependent on the economic status of a country, the increasing demands for infrastructure supportive of innovative research and its implementation in healthcare and prevention programs. Establishing translational research defined as a coherent cancer research continuum is still a challenge. Research has to cover the entire continuum from basic to outcomes research for clinical and prevention modalities. Comprehensive Cancer Centres (CCCs) are of critical importance for integrating research innovations to preclinical and clinical research, as for ensuring state-of-the-art patient care within healthcare systems. International collaborative networks between CCCs are necessary to reach the critical mass of infrastructures and patients for PCM research, and for introducing prevention modalities and new treatments effectively. Outcomes and health economics research are required to assess the cost-effectiveness of new interventions, currently a missing element in the research portfolio. Data sharing and critical mass are essential for innovative research to develop PCM. Despite advances in cancer research, cancer incidence and prevalence is growing. Making cancer research infrastructures accessible for all patients, considering the increasing inequalities, requires science policy actions incentivizing research aimed at prevention and cancer therapeutics/care with an increased focus on patients' needs and cost-effective healthcare.


Assuntos
Neoplasias , Humanos , Cidade do Vaticano , Neoplasias/prevenção & controle , Pesquisa Translacional Biomédica , Atenção à Saúde , Medicina de Precisão
3.
Elife ; 122023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902809

RESUMO

Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here, we show that a macropinocytosis activator, the tumor promoter phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.


Assuntos
Carcinógenos , Neoplasias , Feminino , Gravidez , Humanos , Animais , Camundongos , Via de Sinalização Wnt , Quinase 3 da Glicogênio Sintase , Ésteres de Forbol , Ésteres
4.
iScience ; 26(10): 108075, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860772

RESUMO

Activation of Wnt signaling triggers macropinocytosis and drives many tumors. We now report that the exogenous addition of the second messenger lipid sn-1,2 DAG to the culture medium rapidly induces macropinocytosis. This is accompanied by potentiation of the effects of added Wnt3a recombinant protein or the glycogen synthase kinase 3 (GSK3) inhibitor lithium chloride (LiCl, which mimics Wnt signaling) in luciferase transcriptional reporter assays. In a colorectal carcinoma cell line in which mutation of adenomatous polyposis coli (APC) causes constitutive Wnt signaling, DAG addition increased levels of nuclear ß-catenin, and this increase was partially inhibited by an inhibitor of macropinocytosis. DAG also expanded multivesicular bodies marked by the tetraspan protein CD63. In an in vivo situation, microinjection of DAG induced Wnt-like twinned body axes when co-injected with small amounts of LiCl into Xenopus embryos. These results suggest that the DAG second messenger plays a role in Wnt-driven cancer progression.

5.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37333286

RESUMO

Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here we show that a macropinocytosis activator, the tumor promoter Phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.

6.
Mol Cell Oncol ; 10(1): 2218147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260544

RESUMO

Chordin (CHRD) is a secreted protein important in early development, yet a role for CHRD in human disease has not been identified. In this study we investigated CHRD in cancer and normal adult tissues using the wealth of genome-wide data available in public databases. We found that Chordin is amplified in the DNA of specific cancers such as lung squamous cell and others, although copy number variation did not strictly correlate with higher mRNA expression. In some cancers, such as renal and stomach carcinomas, increased CHRD expression significantly correlated with poor survival. In normal adult human tissues, CHRD mRNA was highest in hepatocytes. Crossveinless-2/BMPER, a component of the Chordin morphogenetic pathway expressed at the opposite side in embryos, was expressed in liver stellate cells. This raises the intriguing possibility that a BMP gradient might be established in the extracellular matrix of the space of Disse that surrounds portal sinusoid capillaries.

7.
Subcell Biochem ; 98: 169-187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35378708

RESUMO

Here we review the regulation of macropinocytosis by Wnt growth factor signaling. Canonical Wnt signaling is normally thought of as a regulator of nuclear ß-catenin, but emerging results indicate that there is much more than ß-catenin to the Wnt pathway. Macropinocytosis is transiently regulated by EGF-RTK-Ras-PI3K signaling. Recent studies show that Wnt signaling provides for sustained acquisition of nutrients by macropinocytosis. Endocytosis of Wnt-Lrp6-Fz receptor complexes triggers the sequestration of GSK3 and components of the cytosolic destruction complex such as Axin1 inside multivesicular bodies (MVBs) through the action of the ESCRT machinery. Wnt macropinocytosis can be induced both by the transcriptional loop of stabilized ß-catenin, and by the inhibition of GSK3 even in the absence of new protein synthesis. The cell is poised for macropinocytosis, and all it requires for triggering of Pak1 and the actin machinery is the inhibition of GSK3. Striking lysosomal acidification, which requires macropinocytosis, is induced by GSK3 chemical inhibitors or Wnt protein. Wnt-induced macropinocytosis requires the ESCRT machinery that forms MVBs. In cancer cells, mutations in the tumor suppressors APC and Axin1 result in extensive macropinocytosis, which can be reversed by restoring wild-type protein. In basal cellular conditions, GSK3 functions to constitutively repress macropinocytosis.


Assuntos
Quinase 3 da Glicogênio Sintase , Fosfatidilinositol 3-Quinases , Complexos Endossomais de Distribuição Requeridos para Transporte , Quinase 3 da Glicogênio Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
8.
iScience ; 25(4): 104123, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35402867

RESUMO

During canonical Wnt signaling, the Wnt receptor complex is sequestered together with glycogen synthase kinase 3 (GSK3) and Axin inside late endosomes, known as multivesicular bodies (MVBs). Here, we present experiments showing that Wnt causes the endocytosis of focal adhesion (FA) proteins and depletion of Integrin ß 1 (ITGß1) from the cell surface. FAs and integrins link the cytoskeleton to the extracellular matrix. Wnt-induced endocytosis caused ITGß1 depletion from the plasma membrane and was accompanied by striking changes in the actin cytoskeleton. In situ protease protection assays in cultured cells showed that ITGß1 was sequestered within membrane-bounded organelles that corresponded to Wnt-induced MVBs containing GSK3 and FA-associated proteins. An in vivo model using Xenopus embryos dorsalized by Wnt8 mRNA showed that ITGß1 depletion decreased Wnt signaling. The finding of a crosstalk between two major signaling pathways, canonical Wnt and focal adhesions, should be relevant to human cancer and cell biology.

9.
Proc Natl Acad Sci U S A ; 119(17): e2201008119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35446621

RESUMO

Lysosomes are the digestive center of the cell and play important roles in human diseases, including cancer. Previous work has suggested that late endosomes, also known as multivesicular bodies (MVBs), and lysosomes are essential for canonical Wnt pathway signaling. Sequestration of Glycogen Synthase 3 (GSK3) and of ß­catenin destruction complex components in MVBs is required for sustained canonical Wnt signaling. Little is known about the role of lysosomes during early development. In the Xenopus egg, a Wnt-like cytoplasmic determinant signal initiates formation of the body axis following a cortical rotation triggered by sperm entry. Here we report that cathepsin D was activated in lysosomes specifically on the dorsal marginal zone of the embryo at the 64-cell stage, long before zygotic transcription starts. Expansion of the MVB compartment with low-dose hydroxychloroquine (HCQ) greatly potentiated the dorsalizing effects of the Wnt agonist lithium chloride (LiCl) in embryos, and this effect required macropinocytosis. Formation of the dorsal axis required lysosomes, as indicated by brief treatments with the vacuolar ATPase (V-ATPase) inhibitors Bafilomycin A1 or Concanamycin A at the 32-cell stage. Inhibiting the MVB-forming machinery with a dominant-negative point mutation in Vacuolar Protein Sorting 4 (Vps4-EQ) interfered with the endogenous dorsal axis. The Wnt-like activity of the dorsal cytoplasmic determinant Huluwa (Hwa), and that of microinjected xWnt8 messenger RNA, also required lysosome acidification and the MVB-forming machinery. We conclude that lysosome function is required for early dorsal axis development in Xenopus. The results highlight the intertwining between membrane trafficking, lysosomes, and vertebrate axis formation.


Assuntos
Lisossomos , Transdução de Sinais , Animais , Padronização Corporal , Embrião de Mamíferos , Embrião não Mamífero , Proteínas de Xenopus , Xenopus laevis
10.
Annu Rev Cell Dev Biol ; 37: 369-389, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34196570

RESUMO

Wnt signaling has multiple functions beyond the transcriptional effects of ß-catenin stabilization. We review recent investigations that uncover new cell physiological effects through the regulation of Wnt receptor endocytosis, Wnt-induced stabilization of proteins (Wnt-STOP), macropinocytosis, increase in lysosomal activity, and metabolic changes. Many of these growth-promoting effects of canonical Wnt occur within minutes and are independent of new protein synthesis. A key element is the sequestration of glycogen synthase kinase 3 (GSK3) inside multivesicular bodies and lysosomes. Twenty percent of human proteins contain consecutive GSK3 phosphorylation motifs, which in the absence of Wnt can form phosphodegrons for polyubiquitination and proteasomal degradation. Wnt signaling by either the pharmacological inhibition of GSK3 or the loss of tumor-suppressor proteins, such as adenomatous polyposis coli (APC) and Axin1, increases lysosomal acidification, anabolic metabolites, and macropinocytosis, which is normally repressed by the GSK3-Axin1-APC destruction complex. The combination of these cell physiological effects drives cell growth.


Assuntos
Quinase 3 da Glicogênio Sintase , Via de Sinalização Wnt , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Lisossomos/metabolismo , Fosforilação , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia
11.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975953

RESUMO

Fibroblast growth factor (FGF)/extracellular signal-regulated kinase (ERK) signaling plays a crucial role in anterior-posterior (A-P) axial patterning of vertebrate embryos by promoting posterior development. In our screens for novel developmental regulators in Xenopus embryos, we identified Fam3b as a secreted factor regulated in ectodermal explants. Family with sequence similarity 3 member B (FAM3B)/PANDER (pancreatic-derived factor) is a cytokine involved in glucose metabolism, type 2 diabetes, and cancer in mammals. However, the molecular mechanism of FAM3B action in these processes remains poorly understood, largely because its receptor is still unidentified. Here we uncover an unexpected role of FAM3B acting as a FGF receptor (FGFR) ligand in Xenopus embryos. fam3b messenger RNA (mRNA) is initially expressed maternally and uniformly in the early Xenopus embryo and then in the epidermis at neurula stages. Overexpression of Xenopus fam3b mRNA inhibited cephalic structures and induced ectopic tail-like structures. Recombinant human FAM3B protein was purified readily from transfected tissue culture cells and, when injected into the blastocoele cavity, also caused outgrowth of tail-like structures at the expense of anterior structures, indicating FGF-like activity. Depletion of fam3b by specific antisense morpholino oligonucleotides in Xenopus resulted in macrocephaly in tailbud tadpoles, rescuable by FAM3B protein. Mechanistically, FAM3B protein bound to FGFR and activated the downstream ERK signaling in an FGFR-dependent manner. In Xenopus embryos, FGFR activity was required epistatically downstream of Fam3b to mediate its promotion of posterior cell fates. Our findings define a FAM3B/FGFR/ERK-signaling pathway that is required for axial patterning in Xenopus embryos and may provide molecular insights into FAM3B-associated human diseases.


Assuntos
Citocinas/fisiologia , Desenvolvimento Embrionário/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos
12.
Sci Rep ; 10(1): 21555, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299006

RESUMO

The canonical Wnt pathway serves as a hub connecting diverse cellular processes, including ß-catenin signaling, differentiation, growth, protein stability, macropinocytosis, and nutrient acquisition in lysosomes. We have proposed that sequestration of ß-catenin destruction complex components in multivesicular bodies (MVBs) is required for sustained canonical Wnt signaling. In this study, we investigated the events that follow activation of the canonical Wnt receptor Lrp6 using an APEX2-mediated proximity labeling approach. The Wnt co-receptor Lrp6 was fused to APEX2 and used to biotinylate targets that are recruited near the receptor during Wnt signaling at different time periods. Lrp6 proximity targets were identified by mass spectrometry, and revealed that many endosomal proteins interacted with Lrp6 within 5 min of Wnt3a treatment. Interestingly, we found that Trk-fused gene (TFG), previously known to regulate the cell secretory pathway and to be rearranged in thyroid and lung cancers, was strongly enriched in the proximity of Lrp6. TFG depletion with siRNA, or knock-out with CRISPR/Cas9, significantly reduced Wnt/ß-catenin signaling in cell culture. In vivo, studies in the Xenopus system showed that TFG is required for endogenous Wnt-dependent embryonic patterning. The results suggest that the multivesicular endosomal machinery and the novel player TFG have important roles in Wnt signaling.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Enzimas Multifuncionais/metabolismo , Receptor trkA/metabolismo , Via de Sinalização Wnt/fisiologia , Fusão Gênica , Células HEK293 , Humanos
13.
Cell Rep ; 32(4): 107973, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32726636

RESUMO

Canonical Wnt signaling is emerging as a major regulator of endocytosis. Here, we report that Wnt-induced macropinocytosis is regulated through glycogen synthase kinase 3 (GSK3) and the ß-catenin destruction complex. We find that mutation of Axin1, a tumor suppressor and component of the destruction complex, results in the activation of macropinocytosis. Surprisingly, inhibition of GSK3 by lithium chloride (LiCl), CHIR99021, or dominant-negative GSK3 triggers macropinocytosis. GSK3 inhibition causes a rapid increase in acidic endolysosomes that is independent of new protein synthesis. GSK3 inhibition or Axin1 mutation increases lysosomal activity, which can be followed with tracers of active cathepsin D, ß-glucosidase, and ovalbumin degradation. Microinjection of LiCl into the blastula cavity of Xenopus embryos causes a striking increase in dextran macropinocytosis. The effects of GSK3 inhibition on protein degradation in endolysosomes are blocked by the macropinocytosis inhibitors EIPA or IPA-3, suggesting that increases in membrane trafficking drive lysosomal activity.


Assuntos
Proteína Axina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Pinocitose/fisiologia , Proteínas de Xenopus/metabolismo , Animais , Linhagem Celular Tumoral , Endocitose/fisiologia , Endossomos/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Lisossomos/metabolismo , Fosforilação , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus laevis , beta Catenina/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(21): 10402-10411, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31061124

RESUMO

Canonical Wnt signaling is emerging as a major regulator of endocytosis. Wnt treatment markedly increased the endocytosis and degradation in lysosomes of BSA. In this study, we report that in addition to receptor-mediated endocytosis, Wnt also triggers the intake of large amounts of extracellular fluid by macropinocytosis, a nonreceptor-mediated actin-driven process. Macropinocytosis induction is rapid and independent of protein synthesis. In the presence of Wnt, large amounts of nutrient-rich packages such as proteins and glycoproteins were channeled into lysosomes after fusing with smaller receptor-mediated vesicles containing glycogen synthase kinase 3 (GSK3) and protein arginine ethyltransferase 1 (PRMT1), an enzyme required for canonical Wnt signaling. Addition of Wnt3a, as well as overexpression of Disheveled (Dvl), Frizzled (Fz8), or dominant-negative Axin induced endocytosis. Depletion of the tumor suppressors adenomatous polyposis coli (APC) or Axin dramatically increased macropinocytosis, defined by incorporation of the high molecular weight marker tetramethylrhodamine (TMR)-dextran and its blockage by the Na+/H+ exchanger ethylisopropyl amiloride (EIPA). Macropinocytosis was blocked by dominant-negative vacuolar protein sorting 4 (Vps4), indicating that the Wnt pathway is dependent on multivesicular body formation, a process called microautophagy. SW480 colorectal cancer cells displayed constitutive macropinocytosis and increased extracellular protein degradation in lysosomes, which were suppressed by restoring full-length APC. Accumulation of the transcriptional activator ß-catenin in the nucleus of SW480 cells was inhibited by methyltransferase inhibition, EIPA, or the diuretic amiloride. The results indicate that Wnt signaling switches metabolism toward nutrient acquisition by engulfment of extracellular fluids and suggest possible treatments for Wnt-driven cancer progression.


Assuntos
Lisossomos/metabolismo , Pinocitose/fisiologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Proteína Axina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Endocitose/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicoproteínas/metabolismo , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Transativadores/metabolismo , beta Catenina/metabolismo
15.
Proc Natl Acad Sci U S A ; 116(8): 2987-2995, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30679275

RESUMO

The nutrient-sensing metabolite S-adenosylmethionine (SAM) controls one-carbon metabolism by donating methyl groups to biochemical building blocks, DNA, RNA, and protein. Our recent work uncovered a requirement for cytoplasmic arginine methylation during Wnt signaling through the activity of protein arginine methyltransferase 1 (PRMT1), which transfers one-carbon groups from SAM to many protein substrates. Here, we report that treatments that decrease levels of the universal methyl donor SAM were potent inhibitors of Wnt signaling and of Wnt-induced digestion of extracellular proteins in endolysosomes. Thus, arginine methylation provides the canonical Wnt pathway with metabolic sensing properties through SAM. The rapid accumulation of Wnt-induced endolysosomes within 30 minutes was inhibited by the depletion of methionine, an essential amino acid that serves as the direct substrate for SAM production. We also found that methionine is required for GSK3 sequestration into multivesicular bodies through microautophagy, an essential step in Wnt signaling activity. Methionine starvation greatly reduced Wnt-induced endolysosomal degradation of extracellular serum proteins. Similar results were observed by addition of nicotinamide (vitamin B3), which serves as a methyl group sink. Methotrexate, a pillar in the treatment of cancer since 1948, decreases SAM levels. We show here that methotrexate blocked Wnt-induced endocytic lysosomal activity and reduced canonical Wnt signaling. Importantly, the addition of SAM during methionine depletion or methotrexate treatment was sufficient to rescue endolysosomal function and Wnt signaling. Inhibiting the Wnt signaling pathway by decreasing one-carbon metabolism provides a platform for designing interventions in Wnt-driven disease.


Assuntos
Glicogênio Sintase Quinase 3 beta/genética , Metionina/metabolismo , Metotrexato/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas Repressoras/genética , Carbono/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Metionina/análogos & derivados , Metionina/farmacologia , Metotrexato/análogos & derivados , Metotrexato/farmacologia , Metilação/efeitos dos fármacos , Niacinamida/farmacologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , S-Adenosilmetionina/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
16.
Dev Cell ; 43(1): 71-82.e6, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-29017031

RESUMO

Angiopoietin-like 4 (ANGPTL4) is a secreted signaling protein that is implicated in cardiovascular disease, metabolic disorder, and cancer. Outside of its role in lipid metabolism, ANGPTL4 signaling remains poorly understood. Here, we identify ANGPTL4 as a Wnt signaling antagonist that binds to syndecans and forms a ternary complex with the Wnt co-receptor Lipoprotein receptor-related protein 6 (LRP6). This protein complex is internalized via clathrin-mediated endocytosis and degraded in lysosomes, leading to attenuation of Wnt/ß-catenin signaling. Angptl4 is expressed in the Spemann organizer of Xenopus embryos and acts as a Wnt antagonist to promote notochord formation and prevent muscle differentiation. This unexpected function of ANGPTL4 invites re-interpretation of its diverse physiological effects in light of Wnt signaling and may open therapeutic avenues for human disease.


Assuntos
Angiopoietinas/metabolismo , Endocitose/fisiologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Receptores de LDL/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/metabolismo , beta Catenina/metabolismo , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/genética , Animais , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Fosforilação , Transdução de Sinais/fisiologia , Proteína Wnt3A/metabolismo , Xenopus , Proteínas de Xenopus/genética
17.
Mol Cell Oncol ; 3(1): e1025181, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27308538

RESUMO

The tumor suppressor Smad4/DPC4 is an essential transcription factor in the TGF-ß pathway and is frequently mutated or deleted in prostate, colorectal, and pancreatic carcinomas. We recently discovered that Smad4 activity and stability are regulated by the FGF/EGF and Wnt signaling pathways through a series of MAPK and GSK3 phosphorylation sites located in its linker region. In the present study, we report that loss-of-function associated with 2 point mutations commonly found in colorectal and pancreatic cancers results from enhanced Smad4 phosphorylation by GSK3, generating a phosphodegron that leads to subsequent ß-TrCP-mediated polyubiquitination and proteasomal degradation. Using chemical GSK3 inhibitors, we show that Smad4 point mutant proteins can be stabilized and TGF-ß signaling restored in cancer cells harboring such mutations.

18.
Mol Cell Oncol ; 3(2): e989133, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27308623

RESUMO

The tumor suppressor Smad4/DPC4 is an essential transcription factor in the TGF-ß pathway that was previously thought to function constitutively. We recently reported that Smad4 activity and stability are directly regulated by 2 major signaling pathways, RTK/MAPK and Wnt/GSK3. Here we examine the molecular, cellular, and potential therapeutic significance of these findings.

19.
Pharmacol Res ; 99: 36-43, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26003288

RESUMO

Canonical Wnt signaling influences cellular fate and proliferation through inhibition of Glycogen Synthase Kinase (GSK3) and the subsequent stabilization of its many substrates, most notably ß-Catenin, a transcriptional co-activator. MITF, a melanoma oncogene member of the microphthalmia family of transcription factors (MiT), was recently found to contain novel GSK3 phosphorylation sites and to be stabilized by Wnt. Other MiT members, TFEB and TFE3, are known to play important roles in cellular clearance pathways by transcriptionally regulating the biogenesis of lysosomes and autophagosomes via activation of CLEAR elements in gene promoters of target genes. Recent studies suggest that MITF can also upregulate many lysosomal genes. MiT family members are dysregulated in cancer and are considered oncogenes, but the underlying oncogenic mechanisms remain unclear. Here we review the role of MiT members, including MITF, in lysosomal biogenesis, and how cancers overexpressing MITF, TFEB or TFE3 could rewire the lysosomal pathway, inhibit cellular senescence, and activate Wnt signaling by increasing sequestration of negative regulators of Wnt signaling in multivesicular bodies (MVBs). Microarray studies suggest that MITF expression inhibits macroautophagy. In melanoma the MITF-driven increase in MVBs generates a positive feedback loop between MITF, Wnt, and MVBs.


Assuntos
Carcinogênese/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Sequência de Aminoácidos , Animais , Antineoplásicos/farmacologia , Autofagia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Endossomos/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Lisossomos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/química , Fator de Transcrição Associado à Microftalmia/genética , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Via de Sinalização Wnt
20.
Proc Natl Acad Sci U S A ; 112(5): E420-9, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605940

RESUMO

Canonical Wnt signaling plays an important role in development and disease, regulating transcription of target genes and stabilizing many proteins phosphorylated by glycogen synthase kinase 3 (GSK3). We observed that the MiT family of transcription factors, which includes the melanoma oncogene MITF (micropthalmia-associated transcription factor) and the lysosomal master regulator TFEB, had the highest phylogenetic conservation of three consecutive putative GSK3 phosphorylation sites in animal proteomes. This finding prompted us to examine the relationship between MITF, endolysosomal biogenesis, and Wnt signaling. Here we report that MITF expression levels correlated with the expression of a large subset of lysosomal genes in melanoma cell lines. MITF expression in the tetracycline-inducible C32 melanoma model caused a marked increase in vesicular structures, and increased expression of late endosomal proteins, such as Rab7, LAMP1, and CD63. These late endosomes were not functional lysosomes as they were less active in proteolysis, yet were able to concentrate Axin1, phospho-LRP6, phospho-ß-catenin, and GSK3 in the presence of Wnt ligands. This relocalization significantly enhanced Wnt signaling by increasing the number of multivesicular bodies into which the Wnt signalosome/destruction complex becomes localized upon Wnt signaling. We also show that the MITF protein was stabilized by Wnt signaling, through the novel C-terminal GSK3 phosphorylations identified here. MITF stabilization caused an increase in multivesicular body biosynthesis, which in turn increased Wnt signaling, generating a positive-feedback loop that may function during the proliferative stages of melanoma. The results underscore the importance of misregulated endolysosomal biogenesis in Wnt signaling and cancer.


Assuntos
Endossomos/fisiologia , Lisossomos/fisiologia , Fator de Transcrição Associado à Microftalmia/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Linhagem Celular Tumoral , Quinase 3 da Glicogênio Sintase/metabolismo , Células HEK293 , Humanos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA