Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107133, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432632

RESUMO

Protein mechanical stability determines the function of a myriad of proteins, especially proteins from the extracellular matrix. Failure to maintain protein mechanical stability may result in diseases and disorders such as cancer, cardiomyopathies, or muscular dystrophy. Thus, developing mutation-free approaches to enhance and control the mechanical stability of proteins using pharmacology-based methods may have important implications in drug development and discovery. Here, we present the first approach that employs computational high-throughput virtual screening and molecular docking to search for small molecules in chemical libraries that function as mechano-regulators of the stability of human cluster of differentiation 4, receptor of HIV-1. Using single-molecule force spectroscopy, we prove that these small molecules can increase the mechanical stability of CD4D1D2 domains over 4-fold in addition to modifying the mechanical unfolding pathways. Our experiments demonstrate that chemical libraries are a source of mechanoactive molecules and that drug discovery approaches provide the foundation of a new type of molecular function, that is, mechano-regulation, paving the way toward mechanopharmacology.


Assuntos
Antígenos CD4 , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Humanos , Antígenos CD4/metabolismo , Antígenos CD4/química , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , HIV-1/metabolismo , HIV-1/química , Simulação de Acoplamento Molecular , Estabilidade Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Brain ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38366623

RESUMO

Alterations in RNA-splicing are a molecular hallmark of several neurological diseases, including muscular dystrophies where mutations in genes involved in RNA metabolism or characterised by alterations in RNA splicing have been described. Here, we present five patients from two unrelated families with a limb-girdle muscular dystrophy (LGMD) phenotype carrying a biallelic variant in SNUPN gene. Snurportin-1, the protein encoded by SNUPN, plays an important role in the nuclear transport of small nuclear ribonucleoproteins (snRNPs), essential components of the spliceosome. We combine deep phenotyping, including clinical features, histopathology and muscle magnetic resonance image (MRI), with functional studies in patient-derived cells and muscle biopsies to demonstrate that variants in SNUPN are the cause of a new type of LGMD according to current definition. Moreover, an in vivo model in Drosophila melanogaster further supports the relevance of Snurportin-1 in muscle. SNUPN patients show a similar phenotype characterised by proximal weakness starting in childhood, restrictive respiratory dysfunction and prominent contractures, although interindividual variability in terms of severity even in individuals from the same family was found. Muscle biopsy showed myofibrillar-like features consisting of myotilin deposits and Z-disc disorganisation. MRI showed predominant impairment of paravertebral, vasti, sartorius, gracilis, peroneal and medial gastrocnemius muscles. Conservation and structural analyses of Snurportin-1 p.Ile309Ser variant suggest an effect in nuclear-cytosol snRNP trafficking. In patient-derived fibroblasts and muscle, cytoplasmic accumulation of snRNP components is observed, while total expression of Snurportin-1 and snRNPs remains unchanged, which demonstrates a functional impact of SNUPN variant in snRNP metabolism. Furthermore, RNA-splicing analysis in patients' muscle showed widespread splicing deregulation, in particular in genes relevant for muscle development and splicing factors that participate in the early steps of spliceosome assembly. In conclusion, we report that SNUPN variants are a new cause of limb girdle muscular dystrophy with specific clinical, histopathological and imaging features, supporting SNUPN as a new gene to be included in genetic testing of myopathies. These results further support the relevance of splicing-related proteins in muscle disorders.

3.
Phys Chem Chem Phys ; 25(40): 27618-27627, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37811710

RESUMO

Transition metals directly contribute to the neurotoxicity of the aggregates of the amyloid-forming Aß peptide. The understanding and rationalization of the coordination modes of metals to Aß amyloid is, therefore, of paramount importance to understand the capacity of a given metal to promote peptide aggregation. Experimentally, multiple Aß-metal structures have been resolved, which exhibit different modes of coordination in both the monomeric and oligomeric forms of Aß. Although Zn(II) metalloproteins are very abundant and often involve cysteine residues in the first coordination shell, in the case of Aß-Zn(II), though, Zn(II) is coordinated by glutamic/aspartic acid and/or histidine residues exclusively, making for an interesting case study. Here we present a systematic analysis of the underlying chemistry on Aß-Zn(II) coordination, where relative stabilities of different coordination arrangements indicate that a mixture of Glu/Asp and His residues is favored. A detailed comparison between different coordination shell geometries shows that tetrahedral coordination is generally favored in the aqueous phase. Our calculations show an interplay between dative covalent interactions and electrostatics which explains the observed trends. Multiple structures deposited in the Protein Data Bank support our findings, suggesting that the trends found in our work may be transferable to other Zn(II) metalloproteins with this type of coordination.

4.
Phys Chem Chem Phys ; 25(39): 26429-26442, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37551731

RESUMO

In order to understand the preferred modes of chelation in metal-binding peptides, quantum mechanical calculations can be used to compute energies, resulting in a hierarchy of binding affinities. These calculations often produce increasing stabilization energies the higher the coordination of the complex. However, as the coordination of a metal increases, the conformational freedom of the polypeptide chain is inevitably reduced, resulting in an entropic penalty. Estimating the magnitude of this penalty from the many different degrees of freedom of biomolecular systems is very challenging, and as a result this contribution to the free energy is often ignored. Here we explore this problem focusing on a family of phosphorylated neuropeptides that bind to aluminum. We find that there is a general negative correlation between both stabilization energy and entropy. Our results suggest that a subtle interplay between enthalpic and entropic forces will determine the population of the most favourable species. Additionally, we discuss the requirements for a possible "Metal Ion Hypothesis" based on our findings.

5.
J Phys Chem B ; 126(16): 2959-2967, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35417161

RESUMO

Mimosine is a nonprotein amino acid derived from plants known for its ability to bind to divalent and trivalent metal cations such as Zn2+, Ni2+, Fe2+, or Al3+. This results in interesting antimicrobial and anticancer properties, which make mimosine a promising candidate for therapeutic applications. One possibility is to incorporate mimosine into synthetic short peptide drugs. However, how this amino acid affects the peptide structure is not well understood, reducing our ability to design effective therapeutic compounds. In this work, we used computer simulations to understand this question. We first built parameters for the mimosine residue to be used in combination with two classical force fields of the Amber family. Then, we used atomistic molecular dynamics simulations with the resulting parameter sets to evaluate the influence of mimosine in the structural propensities for this amino acid. We compared the results of these simulations with homologous peptides, where mimosine is replaced by either phenylalanine or tyrosine. We found that the strong dipole in mimosine induces a preference for conformations where the amino acid rings are stacked over more extended conformations. We validated our results using quantum mechanical calculations, which provide a robust foundation for the outcome of our classical simulations.


Assuntos
Aminoácidos , Mimosina , Aminoácidos/química , Mimosina/química , Mimosina/metabolismo , Mimosina/farmacologia , Conformação Molecular , Simulação de Dinâmica Molecular , Peptídeos/química
6.
J Inorg Biochem ; 210: 111169, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32679460

RESUMO

Classical molecular dynamic simulations and density functional theory are used to unveil the interaction of aluminum with various phosphorylated derivatives of the fragment KSPVPKSPVEEKG (NF13), a major multiphosphorylation domain of human neurofilament medium (NFM). Our calculations reveal the rich coordination chemistry of the resultant structures with a clear tendency of aluminum to form multidentate structures, acting as a bridging agent between different sidechains and altering the local secondary structure around the binding site. Our evaluation of binding energies allows us to determine that phosphorylation has an increase in the affinity of these peptides towards aluminum, although the interaction is not as strong as well-known chelators of aluminum in biological systems. Finally, the presence of hydroxides in the first solvation layer has a clear damping effect on the binding affinities. Our results help in elucidating the potential structures than can be formed between this exogenous neurotoxic metal and key sequences for the formation of neurofilament tangles, which are behind of some of the most important degenerative diseases.


Assuntos
Alumínio/metabolismo , Proteínas de Neurofilamentos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfopeptídeos/metabolismo , Alumínio/química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Teoria da Densidade Funcional , Humanos , Modelos Químicos , Simulação de Dinâmica Molecular , Proteínas de Neurofilamentos/química , Fragmentos de Peptídeos/química , Fosfopeptídeos/química , Ligação Proteica , Conformação Proteica , Termodinâmica
7.
Nat Commun ; 10(1): 5828, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862885

RESUMO

Cells remodel their structure in response to mechanical strain. However, how mechanical forces are translated into biochemical signals that coordinate the structural changes observed at the plasma membrane (PM) and the underlying cytoskeleton during mechanoadaptation is unclear. Here, we show that PM mechanoadaptation is controlled by a tension-sensing pathway composed of c-Abl tyrosine kinase and membrane curvature regulator FBP17. FBP17 is recruited to caveolae to induce the formation of caveolar rosettes. FBP17 deficient cells have reduced rosette density, lack PM tension buffering capacity under osmotic shock, and cannot adapt to mechanical strain. Mechanistically, tension is transduced to the FBP17 F-BAR domain by direct phosphorylation mediated by c-Abl, a mechanosensitive molecule. This modification inhibits FBP17 membrane bending activity and releases FBP17-controlled inhibition of mDia1-dependent stress fibers, favoring membrane adaptation to increased tension. This mechanoprotective mechanism adapts the cell to changes in mechanical tension by coupling PM and actin cytoskeleton remodeling.


Assuntos
Cavéolas/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Mecanotransdução Celular , Proteínas Proto-Oncogênicas c-abl/metabolismo , Fibras de Estresse/metabolismo , Cavéolas/ultraestrutura , Proteínas de Ligação a Ácido Graxo/genética , Fibroblastos , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Microscopia Eletrônica , Fosforilação , RNA Interferente Pequeno/metabolismo , Fibras de Estresse/ultraestrutura , Estresse Mecânico
8.
J Phys Chem B ; 122(49): 11147-11154, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30129367

RESUMO

The analysis and interpretation of single molecule force spectroscopy (smFS) experiments is often complicated by hidden effects from the measuring device. Here we investigate these effects in our recent smFS experiments on the ultrafast folding protein gpW, which has been previously shown to fold without crossing a free energy barrier in the absence of force (i.e., downhill folding). Using atomic force microscopy (AFM) smFS experiments, we found that a very small force of ∼5 pN brings gpW near its unfolding midpoint and results in two-state (un)folding patterns that indicate the emergence of a force-induced free energy barrier. The change in the folding regime is concomitant with a 30,000-fold slowdown of the folding and unfolding times, from a few microseconds that it takes gpW to (un)fold at the midpoint temperature to seconds in the AFM. These results are puzzling because the barrier induced by force in the folding free energy landscape of gpW is far too small to account for such a difference in time scales. Here we use recently developed theoretical methods to resolve the origin of the strikingly slow dynamics of gpW under mechanical force. We find that, while the AFM experiments correctly capture the equilibrium distance distribution, the measured dynamics are entirely controlled by the response of the cantilever and polyprotein linker, which is much slower than the protein conformational dynamics. This interpretation is likely applicable to the folding of other small biomolecules in smFS experiments, and becomes particularly important in the case of systems with fast folding dynamics and small free energy barriers, and for instruments with slow response times.


Assuntos
Dobramento de Proteína , Proteínas/química , Fenômenos Mecânicos , Microscopia de Força Atômica , Conformação Proteica , Temperatura
9.
Chem Soc Rev ; 47(10): 3558-3573, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29473060

RESUMO

Although much of our understanding of protein folding comes from studies of isolated protein domains in bulk, in the cellular environment the intervention of external molecular machines is essential during the protein life cycle. During the past decade single molecule force spectroscopy techniques have been extremely useful to deepen our understanding of these interventional molecular processes, as they allow for monitoring and manipulating mechanochemical events in individual protein molecules. Here, we review some of the critical steps in the protein life cycle, starting with the biosynthesis of the nascent polypeptide chain in the ribosome, continuing with the folding supported by chaperones and the translocation into different cell compartments, and ending with proteolysis in the proteasome. Along these steps, proteins experience molecular forces often combined with chemical transformations, affecting their folding and structure, which are measured or mimicked in the laboratory by the application of force with a single molecule apparatus. These mechanochemical reactions can potentially be used as targets for fighting against diseases. Inspired by these insightful experiments, we devise an outlook on the emerging field of mechanopharmacology, which reflects an alternative paradigm for drug design.


Assuntos
Proteínas/química , Estresse Mecânico , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Proteínas/metabolismo
10.
J Biol Chem ; 292(32): 13374-13380, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28642368

RESUMO

Disulfide bonds play a crucial role in proteins, modulating their stability and constraining their conformational dynamics. A particularly important case is that of proteins that need to withstand forces arising from their normal biological function and that are often disulfide bonded. However, the influence of disulfides on the overall mechanical stability of proteins is poorly understood. Here, we used single-molecule force spectroscopy (smFS) to study the role of disulfide bonds in different mechanical proteins in terms of their unfolding forces. For this purpose, we chose the pilus protein FimG from Gram-negative bacteria and a disulfide-bonded variant of the I91 human cardiac titin polyprotein. Our results show that disulfide bonds can alter the mechanical stability of proteins in different ways depending on the properties of the system. Specifically, disulfide-bonded FimG undergoes a 30% increase in its mechanical stability compared with its reduced counterpart, whereas the unfolding force of I91 domains experiences a decrease of 15% relative to the WT form. Using a coarse-grained simulation model, we rationalized that the increase in mechanical stability of FimG is due to a shift in the mechanical unfolding pathway. The simple topology-based explanation suggests a neutral effect in the case of titin. In summary, our results indicate that disulfide bonds in proteins act in a context-dependent manner rather than simply as mechanical lockers, underscoring the importance of considering disulfide bonds both computationally and experimentally when studying the mechanical properties of proteins.


Assuntos
Conectina/química , Cisteína/química , Cistina/química , Proteínas de Escherichia coli/química , Proteínas de Fímbrias/química , Modelos Moleculares , Substituição de Aminoácidos , Conectina/genética , Conectina/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Humanos , Simulação de Dinâmica Molecular , Mutação , Oxirredução , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Desdobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Imagem Individual de Molécula
11.
Nat Chem ; 9(1): 88-95, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27995927

RESUMO

FeFe hydrogenases are the most efficient H2-producing enzymes. However, inactivation by O2 remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O2 diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O2 results from the four-electron reduction of O2 to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O2 exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.


Assuntos
Hidrogênio/química , Hidrogenase/química , Oxigênio/química , Catálise , Clostridium/enzimologia , Difusão , Técnicas Eletroquímicas , Hidrogenase/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Teoria Quântica
12.
Sci Rep ; 6: 21899, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26915629

RESUMO

High-resolution microscopy techniques have been extensively used to investigate the structure of soft, biological matter at the nanoscale, from very thin membranes to small objects, like viruses. Electron microscopy techniques allow for obtaining extraordinary resolution by averaging signals from multiple identical structures. In contrast, atomic force microscopy (AFM) collects data from single entities. Here, it is possible to finely modulate the interaction with the samples, in order to be sensitive to their top surface, avoiding mechanical deformations. However, most biological surfaces are highly curved, such as fibers or tubes, and ultimate details of their surface are in the vicinity of steep height variations. This limits lateral resolution, even when sharp probes are used. We overcome this problem by using multifrequency force microscopy on a textbook example, the Tobacco Mosaic Virus (TMV). We achieved unprecedented resolution in local maps of amplitude and phase shift of the second excited mode, recorded together with sample topography. Our data, which combine multifrequency imaging and Fourier analysis, confirm the structure deduced from averaging techniques (XRD, cryoEM) for surface features of single virus particles, down to the helical pitch of the coat protein subunits, 2.3 nm. Remarkably, multifrequency AFM images do not require any image postprocessing.


Assuntos
Microscopia de Força Atômica/métodos , Vírus do Mosaico do Tabaco/ultraestrutura , Vírion/ultraestrutura
13.
J Am Chem Soc ; 137(9): 3283-90, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25721133

RESUMO

An outstanding challenge in protein folding is understanding the origin of "internal friction" in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Cadeias de Markov , Peptídeos/química , Conformação Proteica , Receptores de GABA-B/química
14.
Proc Natl Acad Sci U S A ; 111(43): 15420-5, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25313042

RESUMO

Protein-protein interactions are at the heart of regulatory and signaling processes in the cell. In many interactions, one or both proteins are disordered before association. However, this disorder in the unbound state does not prevent many of these proteins folding to a well-defined, ordered structure in the bound state. Here we examine a typical system, where a small disordered protein (PUMA, p53 upregulated modulator of apoptosis) folds to an α-helix when bound to a groove on the surface of a folded protein (MCL-1, induced myeloid leukemia cell differentiation protein). We follow the association of these proteins using rapid-mixing stopped flow, and examine how the kinetic behavior is perturbed by denaturant and carefully chosen mutations. We demonstrate the utility of methods developed for the study of monomeric protein folding, including ß-Tanford values, Leffler α, Φ-value analysis, and coarse-grained simulations, and propose a self-consistent mechanism for binding. Folding of the disordered protein before binding does not appear to be required and few, if any, specific interactions are required to commit to association. The majority of PUMA folding occurs after the transition state, in the presence of MCL-1. We also examine the role of the side chains of folded MCL-1 that make up the binding groove and find that many favor equilibrium binding but, surprisingly, inhibit the association process.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Dobramento de Proteína , Cinética , Ligantes , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
15.
J Am Chem Soc ; 133(17): 6809-16, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21480610

RESUMO

Helix formation is an elementary process in protein folding, influencing both the rate and mechanism of the global folding reaction. Yet, because helix formation is less cooperative than protein folding, the kinetics are often multiexponential, and the observed relaxation times are not straightforwardly related to the microscopic rates for helix nucleation and elongation. Recent ultrafast spectroscopic measurements on the peptide Ac-WAAAH(+)-NH(2) were best fit by two relaxation modes on the ∼0.1-1 ns time scale, (1) apparently much faster than had previously been experimentally inferred for helix nucleation. Here, we use replica-exchange molecular dynamics simulations with an optimized all-atom protein force field (Amber ff03w) and an accurate water model (TIP4P/2005) to study the kinetics of helix formation in this peptide. We calculate temperature-dependent microscopic rate coefficients from the simulations by treating the dynamics between helical states as a Markov process using a recently developed formalism. The fluorescence relaxation curves obtained from simulated temperature jumps are in excellent agreement with the experimentally determined results. We find that the kinetics are multiphasic but can be approximated well by a double-exponential function. The major processes contributing to the relaxation are the shrinking of helical states at the C-terminal end and a faster re-equilibration among coil states. Despite the fast observed relaxation, the helix nucleation time is estimated from our model to be 20-70 ns at 300 K, with a dependence on temperature well described by Arrhenius kinetics.


Assuntos
Peptídeos/química , Fluorescência , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA