RESUMO
Parkinson's disease (PD) is a complex pathology causing a plethora of non-motor symptoms besides classical motor impairments, including cognitive disturbances. Recent studies in the PD human brain have reported microgliosis in limbic and neocortical structures, suggesting a role for neuroinflammation in the development of cognitive decline. Yet, the mechanism underlying the cognitive pathology is under investigated, mainly for the lack of a valid preclinical neuropathological model reproducing the disease's motor and non-motor aspects. Here, we show that the bilateral intracerebral infusion of pre-formed human alpha synuclein oligomers (H-αSynOs) within the substantia nigra pars compacta (SNpc) offers a valid model for studying the cognitive symptoms of PD, which adds to the classical motor aspects previously described in the same model. Indeed, H-αSynOs-infused rats displayed memory deficits in the two-trial recognition task in a Y maze and the novel object recognition (NOR) test performed three months after the oligomer infusion. In the anterior cingulate cortex (ACC) of H-αSynOs-infused rats the in vivo electrophysiological activity was altered and the expression of the neuron-specific immediate early gene (IEG) Npas4 (Neuronal PAS domain protein 4) and the AMPA receptor subunit GluR1 were decreased. The histological analysis of the brain of cognitively impaired rats showed a neuroinflammatory response in cognition-related regions such as the ACC and discrete subareas of the hippocampus, in the absence of any evident neuronal loss, supporting a role of neuroinflammation in cognitive decline. We found an increased GFAP reactivity and the acquisition of a proinflammatory phenotype by microglia, as indicated by the increased levels of microglial Tumor Necrosis Factor alpha (TNF-α) as compared to vehicle-infused rats. Moreover, diffused deposits of phospho-alpha synuclein (p-αSyn) and Lewy neurite-like aggregates were found in the SNpc and striatum, suggesting the spreading of toxic protein within anatomically interconnected areas. Altogether, we present a neuropathological rat model of PD that is relevant for the study of cognitive dysfunction featuring the disease. The intranigral infusion of toxic oligomeric species of alpha-synuclein (α-Syn) induced spreading and neuroinflammation in distant cognition-relevant regions, which may drive the altered neuronal activity underlying cognitive deficits.
Assuntos
Disfunção Cognitiva , Doença de Parkinson , Animais , Disfunção Cognitiva/metabolismo , Giro do Cíngulo/metabolismo , Giro do Cíngulo/patologia , Humanos , Doenças Neuroinflamatórias , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Ratos , Substância Negra/metabolismo , alfa-Sinucleína/metabolismoRESUMO
Marketed drugs for Parkinson's disease (PD) treat disease motor symptoms but are ineffective in stopping or slowing disease progression. In the quest of novel pharmacological approaches that may target disease progression, drug-repurposing provides a strategy to accelerate the preclinical and clinical testing of drugs already approved for other medical indications. Here, we targeted the inflammatory component of PD pathology, by testing for the first time the disease-modifying properties of the immunomodulatory imide drug (IMiD) pomalidomide in a translational rat model of PD neuropathology based on the intranigral bilateral infusion of toxic preformed oligomers of human α-synuclein (H-αSynOs). The neuroprotective effect of pomalidomide (20 mg/kg; i.p. three times/week 48 h apart) was tested in the first stage of disease progression by means of a chronic two-month administration, starting 1 month after H-αSynOs infusion, when an already ongoing neuroinflammation is observed. The intracerebral infusion of H-αSynOs induced an impairment in motor and coordination performance that was fully rescued by pomalidomide, as assessed via a battery of motor tests three months after infusion. Moreover, H-αSynOs-infused rats displayed a 40-45% cell loss within the bilateral substantia nigra, as measured by stereological counting of TH + and Nissl-stained neurons, that was largely abolished by pomalidomide. The inflammatory response to H-αSynOs infusion and the pomalidomide treatment was evaluated both in CNS affected areas and peripherally in the serum. A reactive microgliosis, measured as the volume occupied by the microglial marker Iba-1, was present in the substantia nigra three months after H-αSynOs infusion as well as after H-αSynOs plus pomalidomide treatment. However, microglia differed for their phenotype among experimental groups. After H-αSynOs infusion, microglia displayed a proinflammatory profile, producing a large amount of the proinflammatory cytokine TNF-α. In contrast, pomalidomide inhibited the TNF-α overproduction and elevated the anti-inflammatory cytokine IL-10. Moreover, the H-αSynOs infusion induced a systemic inflammation with overproduction of serum proinflammatory cytokines and chemokines, that was largely mitigated by pomalidomide. Results provide evidence of the disease modifying potential of pomalidomide in a neuropathological rodent model of PD and support the repurposing of this drug for clinical testing in PD patients.
Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Reposicionamento de Medicamentos , Humanos , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Ratos , Substância Negra/metabolismo , Talidomida/análogos & derivados , Fator de Necrose Tumoral alfa , alfa-Sinucleína/genéticaRESUMO
The conversion of otherwise soluble proteins into insoluble amyloid aggregates is associated with a range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, as well as non-neuropathic conditions such as type II diabetes and systemic amyloidoses. It is increasingly evident that the most pernicious species among those forming during protein aggregation are small prefibrillar oligomers. In this review, we describe the recent progress in the characterization of the cellular and molecular interactions by toxic misfolded protein oligomers. A fundamental interaction by these aggregates involves biological membranes, resulting in two major model mechanisms at the onset of the cellular toxicity. These include the membrane disruption model, resulting in calcium imbalance, mitochondrial dysfunction and intracellular reactive oxygen species, and the direct interaction with membrane proteins, leading to the alteration of their native function. A key challenge remains in the characterization of transient interactions involving heterogeneous protein aggregates. Solving this task is crucial in the quest of identifying suitable therapeutic approaches to suppress the cellular toxicity in protein misfolding diseases.
RESUMO
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aß, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Assuntos
Amiloide/química , Amiloide/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Modelos Moleculares , Doenças Neurodegenerativas/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregação Patológica de Proteínas , Deficiências na Proteostase/metabolismo , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/metabolismoRESUMO
The molecular bases of amyloid aggregation propensity are still poorly understood, especially for proteins that display a stable folded native structure. A prototypic example is human beta-2 microglobulin (ß2m), which, when accumulated in patients, gives rise to dialysis-related amyloidosis. Interestingly, although the physiologic concentration of ß2m in mice is five times higher than that found in human patients, no amyloid deposits are observed in mice. Moreover, murine ß2m (mß2m) not only displays a lower amyloid propensity both in vivo and in vitro but also inhibits the aggregation of human ß2m in vitro. Here, we compared human and mß2m for their aggregation propensity, ability to form soluble oligomers, stability, three-dimensional structure and dynamics. Our results indicate that mß2m low-aggregation propensity is due to two concomitant aspects: the low-aggregation propensity of its primary sequence combined with the absence of high-energy amyloid-competent conformations under native conditions. The identification of the specific properties determining the low-aggregation propensity of mouse ß2m will help delineate the molecular risk factors which cause a folded protein to aggregate.
Assuntos
Amiloide/química , Dobramento de Proteína , Microglobulina beta-2/química , Amiloide/metabolismo , Animais , Humanos , Camundongos , Simulação de Dinâmica Molecular , Multimerização Proteica , Estabilidade Proteica , Microglobulina beta-2/metabolismoRESUMO
The aggregation of α-synuclein, a protein involved in neurotransmitter release at presynaptic terminals, is associated with a range of highly debilitating neurodegenerative conditions, most notably Parkinson's disease. Intraneuronal inclusion bodies, primarily composed of α-synuclein fibrils, are the major histopathological hallmarks of these disorders, although small oligomeric assemblies are believed to play a crucial role in neuronal impairment. We have probed the mechanism of neurotoxicity of α-synuclein oligomers isolated in vitro using antibodies targeting the N-terminal region of the protein and found that the presence of the antibody resulted in a substantial reduction of the damage induced by the aggregates when incubated with primary cortical neurons and neuroblastoma cells. We observed a similar behavior in vivo using a strain of C. elegans overexpressing α-synuclein, where the aggregation process itself is also partially inhibited as a result of incubation with the antibodies. The similar effects of the antibodies in reducing the toxicity of the aggregated species formed in vitro and in vivo provide evidence for a common origin of cellular impairment induced by α-synuclein aggregates.
Assuntos
Anticorpos/imunologia , Biopolímeros/toxicidade , Sondas Moleculares , alfa-Sinucleína/toxicidade , Animais , Biopolímeros/imunologia , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Humanos , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/imunologiaRESUMO
HCV infection is a major threaten for human health as it affects hundreds of million people worldwide. Here we investigated the conformational properties of the 412-423 fragment of the envelope E2 protein, one of the most immunogenic regions of the virus proteome whose characterization may provide interesting insights for anti-HCV vaccine development. The spectroscopic characterization of the polypeptide unravels its unexpected tendency to form amyloid-like aggregates. When kept in monomeric state, it shows a limited tendency to adopt regular secondary structure. Enhanced molecular dynamics simulations, starting from four distinct conformational states, highlight its structural versatility. Interestingly, all multiform conformational states of the polypeptide detected in crystallographic complexes with antibodies are present in the structural ensemble of all simulations. This observation corroborates the idea that known antibodies recognize this region through a conformational selection mechanism. Accordingly, the design of effective anti-HCV vaccines should consider the intrinsic flexibility of this region. The structural versatility of the 412-423 region is particularly puzzling if its remarkable sequence conservation is considered. It is likely that flexibility and sequence conservation are important features that endow this epitope with the ability to accomplish distinct functions such as immunity escape and interaction with host receptors.
Assuntos
Epitopos/química , Hepacivirus/química , Simulação de Dinâmica Molecular , Vacinas contra Hepatite Viral/química , Proteínas Virais/químicaRESUMO
Oligomeric species populated during the aggregation process of α-synuclein have been linked to neuronal impairment in Parkinson's disease and related neurodegenerative disorders. By using solution and solid-state nuclear magnetic resonance techniques in conjunction with other structural methods, we identified the fundamental characteristics that enable toxic α-synuclein oligomers to perturb biological membranes and disrupt cellular function; these include a highly lipophilic element that promotes strong membrane interactions and a structured region that inserts into lipid bilayers and disrupts their integrity. In support of these conclusions, mutations that target the region that promotes strong membrane interactions by α-synuclein oligomers suppressed their toxicity in neuroblastoma cells and primary cortical neurons.
Assuntos
Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/toxicidade , Linhagem Celular Tumoral , Membrana Celular/química , Córtex Cerebral/química , Humanos , Bicamadas Lipídicas , Mutação , Neurônios/química , Neurônios/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular , alfa-Sinucleína/genéticaRESUMO
Gab2 is a large disordered protein that regulates several cellular signalling pathways and is overexpressed in different forms of cancer. Because of its disordered nature, a detailed characterization of the mechanisms of recognition between Gab2 and its physiological partners is particularly difficult. Here we provide a detailed kinetic characterization of the binding reaction between Gab2 and the C-terminal SH3 domain of the growth factor receptor-bound protein 2 (Grb2). We demonstrate that Gab2 folds upon binding following an induced fit type mechanism, whereby recognition is characterized by the formation of an intermediate, in which Gab2 is primarily disordered. In this scenario, folding of Gab2 into the bound conformation occurs only after binding. However, an alanine scanning of the proline residues of Gab2 suggests that the intermediate contains some degree of native-like structure, which might play a role for the recognition event to take place. The results, which represent a fundamental step forward in the understanding of this functional protein-protein interaction, are discussed on the light of previous structural works on these proteins.
RESUMO
Approximately one-third of the human proteome is made up of proteins that are entirely disordered or that contain extended disordered regions. Although these disordered proteins are closely linked with many major diseases, their binding mechanisms with small molecules remain poorly understood, and a major concern is whether their specificity can be sufficient for drug development. Here, by studying the interaction of a small molecule and a disordered peptide from the oncogene protein c-Myc, we describe a "specific-diffuse" binding mechanism that exhibits sequence specificity despite being of entropic nature. By combining NMR spectroscopy, biophysical measurements, statistical inference, and molecular simulations, we provide a quantitative measure of such sequence specificity and compare it to the case of the interaction of urea, which is diffuse but not specific. To investigate whether this type of binding can generally modify intermolecular interactions, we show that it leads to an inhibition of the aggregation of the peptide. These results suggest that the binding mechanism that we report may create novel opportunities to discover drugs that target disordered proteins in their monomeric states in a specific manner.
Assuntos
Entropia , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Tiazóis/metabolismo , Fenômenos Biofísicos , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Ligação Proteica , Estatística como AssuntoRESUMO
Polypeptide aggregation into amyloid is linked with several debilitating human diseases. Despite the inherent risk of aggregation-induced cytotoxicity, bacteria control the export of amyloid-prone subunits and assemble adhesive amyloid fibres during biofilm formation. An Escherichia protein, CsgC potently inhibits amyloid formation of curli amyloid proteins. Here we unlock its mechanism of action, and show that CsgC strongly inhibits primary nucleation via electrostatically-guided molecular encounters, which expands the conformational distribution of disordered curli subunits. This delays the formation of higher order intermediates and maintains amyloidogenic subunits in a secretion-competent form. New structural insight also reveal that CsgC is part of diverse family of bacterial amyloid inhibitors. Curli assembly is therefore not only arrested in the periplasm, but the preservation of conformational flexibility also enables efficient secretion to the cell surface. Understanding how bacteria safely handle amyloidogenic polypeptides contribute towards efforts to control aggregation in disease-causing amyloids and amyloid-based biotechnological applications.
Assuntos
Amiloide/química , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Eletricidade Estática , Transporte Ativo do Núcleo Celular , Amiloide/classificação , Amiloide/genética , Amiloide/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Chaperonas Moleculares/metabolismo , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Dobramento de ProteínaRESUMO
There is a growing interest in understanding the properties of intrinsically disordered proteins (IDPs); however, the characterization of these states remains an open challenge. IDPs appear to have functional roles that diverge from those of folded proteins and revolve around their ability to act as hubs for protein-protein interactions. To gain a better understanding of the modes of binding of IDPs, we combined statistical mechanics, calorimetry, and NMR spectroscopy to investigate the recognition and binding of a fragment from the disordered protein Gab2 by the growth factor receptor-bound protein 2 (Grb2), a key interaction for normal cell signaling and cancer development. Structural ensemble refinement by NMR chemical shifts, thermodynamics measurements, and analysis of point mutations indicated that the population of preexisting bound conformations in the free-state ensemble of Gab2 is an essential determinant for recognition and binding by Grb2. A key role was found for transient polyproline II (PPII) structures and extended conformations. Our findings are likely to have very general implications for the biological behavior of IDPs in light of the evidence that a large fraction of these proteins possess a specific propensity to form PPII and to adopt conformations that are more extended than the typical random-coil states.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Mutação Puntual , Ligação Proteica , Domínios de Homologia de srcRESUMO
Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. The crystallized trimeric glycoprotein gB of herpes simplex virus has been described as a postfusion conformation, and several studies prove that like other class III fusion proteins, gB undergoes a pH-dependent switch between the pre- and postfusion conformations. Using several biophysical techniques, we show that peptides corresponding to the long helix of the gB postfusion structure interfere with the membrane fusion event, likely hampering the conformational rearrangements from the pre- to the postfusion structures. Those peptides represent good candidates for further design of peptidomimetic antagonists capable of blocking the fusion process.
Assuntos
Herpesvirus Humano 1/química , Peptídeos/farmacologia , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/análise , Relação Dose-Resposta a Droga , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
We study two distinctly ordered condensed phases of polypeptide molecules, amyloid fibrils and amyloidlike microcrystals, and the first-order twisting phase transition between these two states. We derive a single free-energy form which connects both phases. Our model identifies relevant degrees of freedom for describing the collective behavior of supramolecular polypeptide structures, reproduces accurately the results from molecular dynamics simulations as well as from experiments, and sheds light on the uniform nature of the dimensions of different peptide fibrils.
Assuntos
Peptídeos/química , Amiloide/química , Cristalização , Microscopia de Força Atômica , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Transição de Fase , Conformação Proteica , TermodinâmicaRESUMO
One of the major open challenges in structural biology is to achieve effective descriptions of disordered states of proteins. This problem is difficult because these states are conformationally highly heterogeneous and cannot be represented as single structures, and therefore it is necessary to characterize their conformational properties in terms of probability distributions. Here we show that it is possible to obtain highly quantitative information about particularly important types of probability distributions, the populations of secondary structure elements (α-helix, ß-strand, random coil, and polyproline II), by using the information provided by backbone chemical shifts. The application of this approach to mammalian prions indicates that for these proteins a key role in molecular recognition is played by disordered regions characterized by highly conserved polyproline II populations. We also determine the secondary structure populations of a range of other disordered proteins that are medically relevant, including p53, α-synuclein, and the Aß peptide, as well as an oligomeric form of αB-crystallin. Because chemical shifts are the nuclear magnetic resonance parameters that can be measured under the widest variety of conditions, our approach can be used to obtain detailed information about secondary structure populations for a vast range of different protein states.
Assuntos
Estrutura Secundária de Proteína , Proteínas/química , Sítios de Ligação , Ressonância Magnética Nuclear Biomolecular , Dobramento de ProteínaRESUMO
Understanding the molecular basis of neurodegenerative diseases has enormous implications for the development of effective therapeutic strategies. One of the most puzzling features of these pathologies is the occurrence of distinct strains, which are believed to be generated by alternative conformational transitions of the same protein/peptide. Very recently, it has been discovered that small model peptides are able to form alternative tightly packed assemblies (polymorphs) in the crystalline state. Intriguingly, it has been postulated that the different polymorphs of the same polypeptide sequence may be representative of distinct strains. As the organization of crystalline aggregates of small peptides may be heavily biased by crystal packing, we have here performed MD simulations on steric zipper polymorphs formed by of the IAPP-derived fragment SSTNVG. Our analyses show that these aggregates are rather stable also in a non-crystalline environment. This finding corroborates the hypothesis that steric zipper assemblies are good candidates to account for the phenomenon of strain in neurodegenerative diseases. Present investigations also provide clues on the factors that favour the formation of polymorphs. Indeed, the intrinsic stability of individual ß-sheets formed by SSTNVG strands is very poor. Therefore, the formation of these aggregates is essentially dictated by inter-sheet interactions established within the steric zipper assembly.
Assuntos
Cristalização , Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Diabetes Mellitus Tipo 2/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Doenças Neurodegenerativas/metabolismo , FenótipoRESUMO
Protein-protein recognition regulates the vast majority of physiological or pathological processes. We investigated the role of hydration in collagen recognition by bacterial adhesin CNA by means of first principle molecular-dynamics samplings. Our characterization of the hydration properties of the isolated partners highlights dewetting-prone areas on the surface of CNA that closely match the key regions involved in hydrophobic intermolecular interactions upon complex formation, suggesting that the hydration state of the ligand-free CNA predisposes the protein to the collagen recognition. Moreover, hydration maps of the CNA-collagen complex reveal the presence of a number of structured water molecules that mediate intermolecular interactions at the interface between the two proteins. These hydration sites feature long residence times, significant binding free energies, and a geometrical distribution that closely resembles the hydration pattern of the isolated collagen triple helix. These findings are striking evidence that CNA recognizes the collagen triple helix as a hydrated molecule. For this structural motif, the exposure of several unsatisfied backbone carbonyl groups results in a strong interplay with the solvent, which is shown to also play a role in collagen recognition.
Assuntos
Adesinas Bacterianas/metabolismo , Colágeno/metabolismo , Água/química , Adesinas Bacterianas/química , Apoproteínas/química , Apoproteínas/metabolismo , Colágeno/química , Colágeno/isolamento & purificação , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Estabilidade Proteica , Estrutura Secundária de Proteína , Staphylococcus aureus/metabolismoRESUMO
The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 micros show that low molecular weight oligomers in explicit solvent consist of beta-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient beta-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.
Assuntos
Peptídeos beta-Amiloides/química , Simulação de Dinâmica Molecular , Multimerização Proteica , Solventes/química , Sequência de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Concentração de Íons de Hidrogênio , Peso Molecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Temperatura , TermodinâmicaRESUMO
Joseph-Machado is an incurable neurodegenerative disease caused by toxic aggregation of ataxin-3, a ubiquitin-specific cysteine protease, involved in the ubiquitin-proteasome pathway and known to bind poly-ubiquitin chains of four or more subunits. The enzymatic site resides in the N-terminal josephin domain of ataxin-3. We have characterized the ubiquitin-binding properties of josephin and showed that, unexpectedly, josephin contains two contiguous but distinct ubiquitin-binding sites. One is close to the enzymatic cleft and exploits an induced fit mechanism, which involves a flexible helical hairpin; the other overlaps with the site involved in recognition of HHR23B, a protein involved in delivering proteolytic substrates to the proteasome. To gain a structural description of the system, we had to overcome the nontrivial problem of dealing with a weak ternary complex. This was done by designing josephin mutants, which retain only one binding site and by characterizing the complexes with complementary computational and experimental techniques. The presence of two ubiquitin-binding sites explains how ataxin-3 binds poly-ubiquitin chains and provides new insights into the molecular mechanism of ubiquitin recognition.
Assuntos
Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Ubiquitina/química , Ataxina-3 , Sítios de Ligação , Simulação por Computador , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ubiquitina/metabolismoRESUMO
Replica exchange molecular dynamics (REMD) calculations were used to determine the conformation and dynamics of bifunctional rhodamine probes attached to pairs of cysteines in three model systems: (a) a polyalanine helix, (b) the isolated C helix (residues 53-66) of troponin C, and (c) the C helix of the N-terminal region (residues 1-90) of troponin C (sNTnC). In each case, and for both diastereoisomers of each probe-protein complex, the hydrophobic face of the probe is close to the protein surface, and its carboxylate group is highly solvated. The visible-range fluorescence dipole of the probe is approximately parallel to the line joining the two cysteine residues, as assumed in previous in situ fluorescence polarization studies. The independent rotational motion of the probe with respect to the protein on the nanosecond time scale is highly restricted, in agreement with data from fluorescence polarization and NMR relaxation studies. The detailed interaction of the probe with the protein surface depends on steric factors, electrostatic and hydrophobic interactions, hydrogen bonds, and hydration effects. The interaction is markedly different between diastereoisomers, and multiple preferred conformations exist for a single diasteroisomer. These results show that the combination of the hydrophobic xanthylium moiety of bifunctional rhodamine with the carboxylate substitution in its pendant phenyl ring causes the probe to be immobilized on the protein surface, while the two-site cysteine attachment defines the orientation of its fluorescence dipole. These features allow the orientation of protein components to be accurately determined in situ by polarized fluorescence measurements from bifunctional rhodamine probes.