RESUMO
Tyrosine kinase 2 (TYK2) mediates cytokine signaling through type 1 interferon, interleukin (IL)-12/IL-23, and the IL-10 family. There appears to be an association between TYK2 genetic variants and inflammatory conditions, and clinical evidence suggests that selective inhibition of TYK2 could produce a unique therapeutic profile. Here, we describe the discovery of compound 9 (GLPG3667), a reversible and selective TYK2 adenosine triphosphate competitive inhibitor in development for the treatment of inflammatory and autoimmune diseases. The preclinical pharmacokinetic profile was favorable, and TYK2 selectivity was confirmed in peripheral blood mononuclear cells and whole blood assays. Dermal ear inflammation was reduced in an IL-23-induced in vivo mouse model of psoriasis. GLPG3667 also completed a phase 1b study (NCT04594928) in patients with moderate-to-severe psoriasis where clinical effect was shown within the 4 weeks of treatment and it is now in phase 2 trials for the treatment of dermatomyositis (NCT05695950) and systemic lupus erythematosus (NCT05856448).
Assuntos
Trifosfato de Adenosina , Doenças Autoimunes , Inibidores de Proteínas Quinases , Psoríase , TYK2 Quinase , Humanos , Animais , TYK2 Quinase/antagonistas & inibidores , TYK2 Quinase/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/química , Camundongos , Doenças Autoimunes/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Psoríase/tratamento farmacológico , Feminino , Descoberta de Drogas , Masculino , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Relação Estrutura-Atividade , AdultoRESUMO
The salt-inducible kinases (SIKs) SIK1, SIK2, and SIK3 belong to the adenosine monophosphate-activated protein kinase (AMPK) family of serine/threonine kinases. SIK inhibition represents a new therapeutic approach modulating pro-inflammatory and immunoregulatory pathways that holds potential for the treatment of inflammatory diseases. Here, we describe the identification of GLPG3970 (32), a first-in-class dual SIK2/SIK3 inhibitor with selectivity against SIK1 (IC50 of 282.8 nM on SIK1, 7.8 nM on SIK2 and 3.8 nM on SIK3). We outline efforts made to increase selectivity against SIK1 and improve CYP time-dependent inhibition properties through the structure-activity relationship. The dual activity of 32 in modulating the pro-inflammatory cytokine TNFα and the immunoregulatory cytokine IL-10 is demonstrated in vitro in human primary myeloid cells and human whole blood, and in vivo in mice stimulated with lipopolysaccharide. Compound 32 shows dose-dependent activity in disease-relevant mouse pharmacological models.
Assuntos
Proteínas Quinases , Proteínas Serina-Treonina Quinases , Camundongos , Humanos , Animais , Proteínas Quinases/metabolismo , Citocinas , Fator de Necrose Tumoral alfaRESUMO
Airway epithelial cells and macrophages participate in inflammatory responses to external noxious stimuli, which can cause epithelial injury. Upon injury, epithelial cells and macrophages act in concert to ensure rapid restoration of epithelial integrity. The nature of the interactions between these cell types during epithelial repair is incompletely understood. We used an in vitro human coculture model of primary bronchial epithelial cells cultured at the air-liquid interface (ALI-PBEC) and polarized primary monocyte-derived macrophages. Using this coculture, we studied the contribution of macrophages to epithelial innate immunity, wound healing capacity, and epithelial exposure to whole cigarette smoke (WCS). Coculture of ALI-PBEC with lipopolysaccharide (LPS)-activated M(GM-CSF) macrophages increased the expression of DEFB4A, CXCL8, and IL6 at 24 h in the ALI-PBEC, whereas LPS-activated M(M-CSF) macrophages only increased epithelial IL6 expression. Furthermore, wound repair was accelerated by coculture with both activated M(GM-CSF) and M(M-CSF) macrophages, also following WCS exposure. Coculture of ALI-PBEC and M(GM-CSF) macrophages resulted in increased CAMP expression in M(GM-CSF) macrophages, which was absent in M(M-CSF) macrophages. CAMP encodes LL-37, an antimicrobial peptide with immune-modulating and repair-enhancing activities. In conclusion, dynamic crosstalk between ALI-PBEC and macrophages enhances epithelial innate immunity and wound repair, even upon concomitant cigarette smoke exposure.
Assuntos
Imunidade Inata , Macrófagos/imunologia , Mucosa Respiratória/imunologia , Cicatrização , Comunicação Celular , Células Cultivadas , Técnicas de Cocultura , Células Epiteliais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mucosa Respiratória/citologiaRESUMO
The JAKs receive continued interest as therapeutic targets for autoimmune, inflammatory, and oncological diseases. JAKs play critical roles in the development and biology of the hematopoietic system, as evidenced by mouse and human genetics. JAK1 is critical for the signal transduction of many type I and type II inflammatory cytokine receptors. In a search for JAK small molecule inhibitors, GLPG0634 was identified as a lead compound belonging to a novel class of JAK inhibitors. It displayed a JAK1/JAK2 inhibitor profile in biochemical assays, but subsequent studies in cellular and whole blood assays revealed a selectivity of â¼30-fold for JAK1- over JAK2-dependent signaling. GLPG0634 dose-dependently inhibited Th1 and Th2 differentiation and to a lesser extent the differentiation of Th17 cells in vitro. GLPG0634 was well exposed in rodents upon oral dosing, and exposure levels correlated with repression of Mx2 expression in leukocytes. Oral dosing of GLPG0634 in a therapeutic set-up in a collagen-induced arthritis model in rodents resulted in a significant dose-dependent reduction of the disease progression. Paw swelling, bone and cartilage degradation, and levels of inflammatory cytokines were reduced by GLPG0634 treatment. Efficacy of GLPG0634 in the collagen-induced arthritis models was comparable to the results obtained with etanercept. In conclusion, the JAK1 selective inhibitor GLPG0634 is a promising novel therapeutic with potential for oral treatment of rheumatoid arthritis and possibly other immune-inflammatory diseases.