Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 114(5): 971-981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376984

RESUMO

Nodule-specific cysteine-rich (NCR) peptides, encoded in the genome of the Mediterranean legume Medicago truncatula (barrelclover), are known to regulate plant-microbe interactions. A subset of computationally derived 20-mer peptide fragments from 182 NCR peptides was synthesized to identify those with activity against the unculturable vascular pathogen associated with citrus greening disease, 'Candidatus Liberibacter asiaticus' (CLas). Grounded in a design of experiments framework, we evaluated the peptides in a screening pipeline involving three distinct assays: a bacterial culture assay with Liberibacter crescens, a CLas-infected excised citrus leaf assay, and an assay to evaluate effects on bacterial acquisition by the nymphal stage of hemipteran vector Diaphorina citri. A subset of the 20-mer NCR peptide fragments inhibits both CLas growth in citrus leaves and CLas acquisition by D. citri. Two peptides induced higher levels of D. citri mortality. These findings reveal 20-mer NCR peptides as a new class of plant-derived biopesticide molecules to control citrus greening disease.


Assuntos
Citrus , Medicago truncatula , Peptídeos , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Citrus/microbiologia , Peptídeos/química , Peptídeos/metabolismo , Medicago truncatula/microbiologia , Cisteína , Hemípteros/microbiologia , Agentes de Controle Biológico , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Liberibacter/genética , Animais , Rhizobiaceae/genética
2.
Mol Plant Microbe Interact ; 31(10): 1095-1110, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29767548

RESUMO

Chloroplasts play a central role in pathogen defense in plants. However, most studies explaining the relationship between pathogens and chloroplasts have focused on pathogens that infect mesophyll cells. In contrast, the family Luteoviridae includes RNA viruses that replicate and traffic exclusively in the phloem. Recently, our lab has shown that Potato leafroll virus (PLRV), the type species in the genus Polerovirus, forms an extensive interaction network with chloroplast-localized proteins that is partially dependent on the PLRV capsid readthrough domain (RTD). In this study, we used virus-induced gene silencing to disrupt chloroplast function and assess the effects on PLRV accumulation in two host species. Silencing of phytoene desaturase (PDS), a key enzyme in carotenoid, chlorophyll, and gibberellic acid (GA) biosynthesis, resulted in a substantial increase in the systemic accumulation of PLRV. This increased accumulation was attenuated when plants were infected with a viral mutant that does not express the RTD. Application of GA partially suppressed the increase in virus accumulation in PDS-silenced plants, suggesting that GA signaling also plays a role in limiting PLRV infection. In addition, the fecundity of the aphid vector of PLRV was increased when fed on PDS-silenced plants relative to PLRV-infected plants.


Assuntos
Afídeos/virologia , Cloroplastos/enzimologia , Nicotiana/virologia , Oxirredutases/metabolismo , Floema/virologia , Animais , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Insetos Vetores , Luteoviridae , Oxirredutases/genética , Nicotiana/metabolismo
3.
Virus Res ; 241: 42-52, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28502641

RESUMO

Interactions among plant pathogenic viruses in the family Luteoviridae and their plant hosts and insect vectors are governed by the topology of the viral capsid, which is the sole vehicle for long distance movement of the viral genome. Previous application of a mass spectrometry-compatible cross-linker to preparations of the luteovirid Potato leafroll virus (PLRV; Luteoviridae: Polerovirus) revealed a detailed network of interactions between viral structural proteins and enabled generation of the first cross-linking guided coat protein models. In this study, we extended application of chemical cross-linking technology to the related Turnip yellows virus (TuYV; Luteoviridae: Polerovirus). Remarkably, all cross-links found between sites in the viral coat protein found for TuYV were also found in PLRV. Guided by these data, we present two models for the TuYV coat protein trimer, the basic structural unit of luteovirid virions. Additional cross-links found between the TuYV coat protein and a site in the viral protease domain suggest a possible role for the luteovirid protease in regulating the structural biology of these viruses.


Assuntos
Proteínas do Capsídeo/genética , Luteoviridae/genética , Luteoviridae/ultraestrutura , Doenças das Plantas/virologia , Vírus de Plantas/genética , Brassica/virologia , Proteínas do Capsídeo/metabolismo , Grão Comestível/virologia , Genoma Viral/genética , Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Saccharum/virologia , Solanum tuberosum/virologia , Glycine max/virologia , Nicotiana/virologia
4.
J Proteome Res ; 15(12): 4601-4611, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27762138

RESUMO

Phloem localization of plant viruses is advantageous for acquisition by sap-sucking vectors but hampers host-virus protein interaction studies. In this study, Potato leafroll virus (PLRV)-host protein complexes were isolated from systemically infected potato, a natural host of the virus. Comparing two different co-immunoprecipitation (co-IP) support matrices coupled to mass spectrometry (MS), we identified 44 potato proteins and one viral protein (P1) specifically associated with virus isolated from infected phloem. An additional 142 proteins interact in complex with virus at varying degrees of confidence. Greater than 80% of these proteins were previously found to form high confidence interactions with PLRV isolated from the model host Nicotiana benthamiana. Bioinformatics revealed that these proteins are enriched for functions related to plasmodesmata, organelle membrane transport, translation, and mRNA processing. Our results show that model system proteomics experiments are extremely valuable for understanding protein interactions regulating infection in recalcitrant pathogens such as phloem-limited viruses.


Assuntos
Floema/virologia , Mapeamento de Interação de Proteínas/métodos , Biologia Computacional , Interações Hospedeiro-Patógeno , Proteínas de Plantas/metabolismo , Vírus de Plantas/química , Ligação Proteica , Solanum tuberosum/química , Solanum tuberosum/virologia , Proteínas Virais/metabolismo
5.
J Virol ; 90(4): 1973-87, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656710

RESUMO

UNLABELLED: Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. IMPORTANCE: The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy.


Assuntos
Interações Hospedeiro-Patógeno , Luteoviridae/fisiologia , Mapas de Interação de Proteínas , Proteômica/métodos , Proteínas de Plantas/metabolismo , Nicotiana , Proteínas Virais/metabolismo
6.
Proteomics ; 15(12): 2098-112, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25787689

RESUMO

Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species.


Assuntos
Luteoviridae/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Proteômica/métodos , Solanum tuberosum/metabolismo , Proteínas Estruturais Virais/metabolismo , Western Blotting , Imunoprecipitação , Espectrometria de Massas , Doenças das Plantas/virologia , Folhas de Planta/virologia , Solanum tuberosum/virologia
7.
Mol Plant Microbe Interact ; 28(4): 467-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25496593

RESUMO

Identification of host proteins interacting with the aphidborne Potato leafroll virus (PLRV) from the genus Polerovirus, family Luteoviridae, is a critical step toward understanding how PLRV and related viruses infect plants. However, the tight spatial distribution of PLRV to phloem tissues poses challenges. A polyclonal antibody raised against purified PLRV virions was used to coimmunoprecipitate virus-host protein complexes from Nicotiana benthamiana tissue inoculated with an infectious PLRV cDNA clone using Agrobacterium tumefaciens. A. tumefaciens-mediated delivery of PLRV enabled infection and production of assembled, insect-transmissible virus in most leaf cells, overcoming the dynamic range constraint posed by a systemically infected host. Isolated protein complexes were characterized using high-resolution mass spectrometry and consisted of host proteins interacting directly or indirectly with virions, as well as the nonincorporated readthrough protein (RTP) and three phosphorylated positional isomers of the RTP. A bioinformatics analysis using ClueGO and STRING showed that plant proteins in the PLRV protein interaction network regulate key biochemical processes, including carbon fixation, amino acid biosynthesis, ion transport, protein folding, and trafficking.


Assuntos
Luteoviridae/metabolismo , Proteínas de Plantas , Mapas de Interação de Proteínas/fisiologia , Proteínas Virais , Agrobacterium tumefaciens , Imunoprecipitação , Luteoviridae/química , Espectrometria de Massas , Proteínas de Plantas/análise , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nicotiana/química , Nicotiana/virologia , Proteínas Virais/análise , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA