Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 204(3): 498-509, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882518

RESUMO

Upon Ag exposure, naive B cells expressing BCR able to bind Ag can undergo robust proliferation and differentiation that can result in the production of Ab-secreting and memory B cells. The factors determining whether an individual naive B cell will proliferate following Ag encounter remains unclear. In this study, we found that polyclonal naive murine B cell populations specific for a variety of foreign Ags express high levels of the orphan nuclear receptor Nur77, which is known to be upregulated downstream of BCR signaling as a result of cross-reactivity with self-antigens in vivo. Similarly, a fraction of naive human B cells specific for clinically-relevant Ags derived from respiratory syncytial virus and HIV-1 also exhibited an IgMLOW IgD+ phenotype, which is associated with self-antigen cross-reactivity. Functionally, naive B cells expressing moderate levels of Nur77 are most likely to proliferate in vivo following Ag injection. Together, our data indicate that BCR cross-reactivity with self-antigen is a common feature of populations of naive B cells specific for foreign Ags and a moderate level of cross-reactivity primes individual cells for optimal proliferative responses following Ag exposure.


Assuntos
Autoantígenos/imunologia , Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Reações Cruzadas/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Formação de Anticorpos , Diferenciação Celular , Células Cultivadas , Memória Imunológica , Ativação Linfocitária , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos B/genética
2.
Vaccine ; 33(24): 2823-9, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25865472

RESUMO

Nipah virus is a zoonotic paramyxovirus that causes severe respiratory and/or encephalitic disease in humans, often resulting in death. It is transmitted from pteropus fruit bats, which serve as the natural reservoir of the virus, and outbreaks occur on an almost annual basis in Bangladesh or India. Outbreaks are small and sporadic, and several cases of human-to-human transmission have been documented as an important feature of the epidemiology of Nipah virus disease. There are no approved countermeasures to combat infection and medical intervention is supportive. We recently generated a recombinant replication-competent vesicular stomatitis virus-based vaccine that encodes a Nipah virus glycoprotein as an antigen and is highly efficacious in the hamster model of Nipah virus disease. Herein, we show that this vaccine protects African green monkeys, a well-characterized model of Nipah virus disease, from disease one month after a single intramuscular administration of the vaccine. Vaccination resulted in a rapid and strong virus-specific immune response which inhibited virus shedding and replication. This vaccine platform provides a rapid means to afford protection from Nipah virus in an outbreak situation.


Assuntos
Infecções por Henipavirus/prevenção & controle , Vírus Nipah/imunologia , Vacinas de DNA/administração & dosagem , Vesiculovirus/imunologia , Vacinas Virais/administração & dosagem , Animais , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Feminino , Glicoproteínas/administração & dosagem , Glicoproteínas/genética , Glicoproteínas/imunologia , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Imunidade Celular , Masculino , Vírus Nipah/genética , Vírus Nipah/fisiologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de DNA/imunologia , Vesiculovirus/genética , Proteínas do Envelope Viral/imunologia , Carga Viral , Vacinas Virais/imunologia , Viremia
3.
Vaccine ; 32(22): 2637-44, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24631094

RESUMO

BACKGROUND: Nipah virus (NiV), a zoonotic pathogen causing severe respiratory illness and encephalitis in humans, emerged in Malaysia in 1998 with subsequent outbreaks on an almost annual basis since 2001 in parts of the Indian subcontinent. The high case fatality rate, human-to-human transmission, wide-ranging reservoir distribution and lack of licensed intervention options are making NiV a serious regional and potential global public health problem. The objective of this study was to develop a fast-acting, single-dose NiV vaccine that could be implemented in a ring vaccination approach during outbreaks. METHODS: In this study we have designed new live-attenuated vaccine vectors based on recombinant vesicular stomatitis viruses (rVSV) expressing NiV glycoproteins (G or F) or nucleoprotein (N) and evaluated their protective efficacy in Syrian hamsters, an established NiV animal disease model. We further characterized the humoral immune response to vaccination in hamsters using ELISA and neutralization assays and performed serum transfer studies. RESULTS: Vaccination of Syrian hamsters with a single dose of the rVSV vaccine vectors resulted in strong humoral immune responses with neutralizing activities found only in those animals vaccinated with rVSV expressing NiV G or F proteins. Vaccinated animals with neutralizing antibody responses were completely protected from lethal NiV disease, whereas animals vaccinated with rVSV expressing NiV N showed only partial protection. Protection of NiV G or F vaccinated animals was conferred by antibodies, most likely the neutralizing fraction, as demonstrated by serum transfer studies. Protection of N-vaccinated hamsters was not antibody-dependent indicating a role of adaptive cellular responses for protection. CONCLUSIONS: The rVSV vectors expressing Nipah virus G or F are prime candidates for new 'emergency vaccines' to be utilized for NiV outbreak management.


Assuntos
Infecções por Henipavirus/prevenção & controle , Vírus Nipah , Vírus da Estomatite Vesicular Indiana , Vacinas Virais/administração & dosagem , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/sangue , Formação de Anticorpos , Chlorocebus aethiops , Vetores Genéticos , Imunização Passiva , Mesocricetus/sangue , Proteínas do Nucleocapsídeo/imunologia , Vacinas Atenuadas/administração & dosagem , Células Vero , Proteínas do Envelope Viral/imunologia , Carga Viral
4.
PLoS Pathog ; 9(10): e1003684, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130486

RESUMO

The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Vírus Hendra/química , Proteínas Virais de Fusão/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Reações Cruzadas , Cristalografia por Raios X , Vírus Hendra/genética , Vírus Hendra/imunologia , Infecções por Henipavirus/genética , Infecções por Henipavirus/imunologia , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
5.
J Virol ; 83(24): 13037-41, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19812147

RESUMO

Murine norovirus (MNV) is a highly infectious but generally nonpathogenic agent that is commonly found in research mouse colonies in both North America and Europe. In the present study, the effects of acute and chronic infections with MNV on immune responses and recovery from concurrent Friend virus (FV) infections were investigated. No significant differences in T-cell or NK-cell responses, FV-neutralizing antibody responses, or long-term recovery from FV infection were observed. We conclude that concurrent MNV infections had no major impacts on FV infections.


Assuntos
Infecções por Caliciviridae/imunologia , Leucemia Experimental/imunologia , Norovirus , Infecções por Retroviridae/imunologia , Infecções Tumorais por Vírus/imunologia , Doença Aguda , Animais , Anticorpos Antivirais/sangue , Doença Crônica , Vírus da Leucemia Murina de Friend , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA