Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 42(6): 1371-1385, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37014181

RESUMO

A series of chronic toxicity tests was conducted exposing three aquatic species to iron (Fe) in laboratory freshwaters. The test organisms included the green algae Raphidocelis subcapitata, the cladoceran Ceriodaphnia dubia, and the fathead minnow Pimephales promelas. They were exposed to Fe (as Fe (III) sulfate) in waters under varying pH (5.9-8.5), hardness (10.3-255 mg/L CaCO3 ), and dissolved organic carbon (DOC; 0.3-10.9 mg/L) conditions. Measured total Fe was used for calculations of biological effect concentrations because dissolved Fe was only a fraction of nominal and did not consistently increase as total Fe increased. This was indicative of the high concentrations of Fe required to elicit a biological response and that Fe species that did not pass through a 0.20- or 0.45-µm filter (dissolved fraction) contributed to Fe toxicity. The concentrations frequently exceeded the solubility limits of Fe(III) under circumneutral pH conditions relevant to most natural surface waters. Chronic toxicity endpoints (10% effect concentrations [EC10s]) ranged from 442 to 9607 µg total Fe/L for R. subcapitata growth, from 383 to 15 947 µg total Fe/L for C. dubia reproduction, and from 192 to 58,308 µg total Fe/L for P. promelas growth. Toxicity to R. subcapitata was variably influenced by all three water quality parameters, but especially DOC. Toxicity to C. dubia was influenced by DOC, less so by hardness, but not by pH. Toxicity to P. promelas was variable, but greatest under low hardness, low pH, and low DOC conditions. These data were used to develop an Fe-specific, bioavailability-based multiple linear regression model as part of a companion publication. Environ Toxicol Chem 2023;42:1371-1385. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Cyprinidae , Poluentes Químicos da Água , Animais , Organismos Aquáticos/fisiologia , Matéria Orgânica Dissolvida , Ferro/toxicidade , Dureza , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/toxicidade , Cyprinidae/fisiologia
2.
Environ Toxicol Chem ; 42(6): 1386-1400, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36988398

RESUMO

We developed multiple linear regression (MLR) models for predicting iron (Fe) toxicity to aquatic organisms for use in deriving site-specific water quality guidelines (WQGs). The effects of dissolved organic carbon (DOC), hardness, and pH on Fe toxicity to three representative taxa (Ceriodaphnia dubia, Pimephales promelas, and Raphidocelis subcapitata) were evaluated. Both DOC and pH were identified as toxicity-modifying factors (TMFs) for P. promelas and R. subcapitata, whereas only DOC was a TMF for C. dubia. The MLR models based on effective concentration 10% and 20% values were developed and performed reasonably well, with adjusted R2 of 0.68-0.89 across all species and statistical endpoints. Differences among species in the MLR models precluded development of a pooled model. Instead, the species-specific models were assumed to be representative of invertebrates, fish, and algae and were applied accordingly to normalize toxicity data. The species sensitivity distribution (SSD) included standard laboratory toxicity data and effects data from mesocosm experiments on aquatic insects, with aquatic insects being the predominant taxa in the lowest quartile of the SSD. Using the European Union approach for deriving WQGs, application of MLR models to this SSD resulted in WQGs ranging from 114 to 765 µg l-1 Fe across the TMF conditions evaluated (DOC: 0.5-10 mg l-1 ; pH: 6.0-8.4), with slightly higher WQGs (199-910 µg l-1 ) derived using the US Environmental Protection Agency (USEPA) methodology. An important uncertainty in these derivations is the applicability of the C. dubia MLR model (no pH parameter) to aquatic insects, and understanding the pH sensitivity of aquatic insects to Fe toxicity is a research priority. An Excel-based tool for calculating Fe WQGs using both European Union and USEPA approaches across a range of TMF conditions is provided. Environ Toxicol Chem 2023;42:1386-1400. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Animais , Modelos Lineares , Água Doce/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Ferro/toxicidade
3.
Environ Toxicol Chem ; 40(8): 2189-2205, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33847411

RESUMO

Toxicity-modifying factors can be modeled either empirically with linear regression models or mechanistically, such as with the biotic ligand model (BLM). The primary factors affecting the toxicity of nickel to aquatic organisms are hardness, dissolved organic carbon (DOC), and pH. Interactions between these terms were also considered. The present study develops multiple linear regressions (MLRs) with stepwise regression for 5 organisms in acute exposures, 4 organisms in chronic exposures, and pooled models for acute, chronic, and all data and compares the performance of the Pooled All MLR model to the performance of the BLM. Independent validation data were used for evaluating model performance, which for pooled models included data for organisms and endpoints not present in the calibration data set. Hardness and DOC were most often selected as the explanatory variables in the MLR models. An attempt was also made at evaluating the uncertainty of the predictions for each model; predictions that showed the most error tended to show the highest levels of uncertainty as well. The performances of the 2 models were largely equal, with differences becoming more apparent when looking at the performance within subsets of the data. Environ Toxicol Chem 2021;40:2189-2205. © 2021 SETAC.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Água Doce/química , Ligantes , Modelos Lineares , Níquel/toxicidade , Poluentes Químicos da Água/toxicidade
4.
Environ Toxicol Chem ; 39(9): 1724-1736, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32503077

RESUMO

Multiple linear regression (MLR) models for predicting chronic aluminum toxicity to a cladoceran (Ceriodaphnia dubia) and a fish (Pimephales promelas) as a function of 3 toxicity-modifying factors (TMFs)-dissolved organic carbon (DOC), pH, and hardness-have been published previously. However, the range over which data for these TMFs were available was somewhat limited. To address this limitation, additional chronic toxicity tests with these species were subsequently conducted to expand the DOC range up to 12 mg/L, the pH range up to 8.7, and the hardness range up to 428 mg/L. The additional toxicity data were used to update the chronic MLR models. The adjusted R2 for the C. dubia 20% effect concentration (EC20) model increased from 0.71 to 0.92 with the additional toxicity data, and the predicted R2 increased from 0.57 to 0.89. For P. promelas, the adjusted R2 increased from 0.87 to 0.92 and the predicted R2 increased from 0.72 to 0.87. The high predicted R2 relative to the adjusted R2 indicates that the models for both species are not overly parameterized. When data for C. dubia and P. promelas were pooled, the adjusted R2 values were comparable to the species-specific models (0.90 and 0.88 for C. dubia and P. promelas, respectively). This indicates that chronic aluminum EC20s for C. dubia and P. promelas respond similarly to variation in DOC, pH, and hardness. Overall, the pooled model predicted EC20s that were within a factor of 2 of observed in 100% of the C. dubia tests and 94% of the P. promelas tests. Environ Toxicol Chem 2020;39:1724-1736. © 2020 SETAC.


Assuntos
Alumínio/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Cyprinidae/metabolismo , Água Doce/química , Guias como Assunto , Testes de Toxicidade Crônica , Qualidade da Água , Animais , Concentração de Íons de Hidrogênio , Modelos Lineares , Especificidade da Espécie , Poluentes Químicos da Água/toxicidade
5.
Environ Toxicol Chem ; 37(1): 80-90, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28833517

RESUMO

The bioavailability of aluminum (Al) to freshwater aquatic organisms varies as a function of several water chemistry parameters, including pH, dissolved organic carbon (DOC), and water hardness. We evaluated the ability of multiple linear regression (MLR) models to predict chronic Al toxicity to a green alga (Pseudokirchneriella subcapitata), a cladoceran (Ceriodaphnia dubia), and a fish (Pimephales promelas) as a function of varying DOC, pH, and hardness conditions. The MLR models predicted toxicity values that were within a factor of 2 of observed values in 100% of the cases for P. subcapitata (10 and 20% effective concentrations [EC10s and EC20s]), 91% of the cases for C. dubia (EC10s and EC20s), and 95% (EC10s) and 91% (EC20s) of the cases for P. promelas. The MLR models were then applied to all species with Al toxicity data to derive species and genus sensitivity distributions that could be adjusted as a function of varying DOC, pH, and hardness conditions (the P. subcapitata model was applied to algae and macrophytes, the C. dubia model was applied to invertebrates, and the P. promelas model was applied to fish). Hazardous concentrations to 5% of the species or genera were then derived in 2 ways: 1) fitting a log-normal distribution to species-mean EC10s for all species (following the European Union methodology), and 2) fitting a triangular distribution to genus-mean EC20s for animals only (following the US Environmental Protection Agency methodology). Overall, MLR-based models provide a viable approach for deriving Al water quality guidelines that vary as a function of DOC, pH, and hardness conditions and are a significant improvement over bioavailability corrections based on single parameters. Environ Toxicol Chem 2018;37:80-90. © 2017 SETAC.


Assuntos
Alumínio/toxicidade , Organismos Aquáticos/fisiologia , Água Doce/química , Guias como Assunto , Testes de Toxicidade Crônica , Qualidade da Água , Animais , Organismos Aquáticos/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Clorófitas/fisiologia , Cladocera/efeitos dos fármacos , Cladocera/fisiologia , Cyprinidae/fisiologia , Modelos Lineares , Especificidade da Espécie , Água/química , Poluentes Químicos da Água/toxicidade
7.
Integr Environ Assess Manag ; 9(4): 580-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23553986

RESUMO

In Europe, the European Union's Existing Substances Regulation (EEC 793/93), the REACH Regulation, and Water Framework Directive all share common guidance for conducting environmental effects assessments, which can be further used to derive predicted no effect concentrations (PNECs) and environmental quality standards (EQS) for chemical substances. To meet the criteria for using a species sensitivity distribution (SSD) in the effects assessment of Ni for marine organisms, chronic toxicity data from the published scientific literature were augmented with toxicity testing of several additional marine species including: a unicellular alga (Dunalliela tertiolecta), a diatom (Skeletonema costatum), 2 macroalgae (Champia parvula, Macrocystis pyrifera), 2 mollusks (Crassostrea gigas, Mytilus galloprovincialis), 2 echinoderms (Dendraster excentricus, Strongylocentrotus purpuratus), a polychaete (Neanthes arenaceodentata), and a fish (Cyprinodon variegatus). Based on this updated database, which includes chronic Ni toxicity data for a total of 17 marine species, HC5 values (hazardous concentrations to 5% of the species) were derived using an SSD. The most sensitive species is a tropical sea urchin from the Caribbean region, Diadema antillarum, which has an EC10 that is approximately 6-fold less than the EC10 for the second most sensitive species tested. There is some uncertainty in the representativeness of D. antillarum to temperate European marine waters because 1) a European sea urchin species (Paracentrotus lividus) is approximately 48-fold less sensitive to Ni, and (2) ambient marine Ni concentrations in at least some European waters closely approach the D. antillarum EC10. The HC5 values with and without D. antillarum included in the SSD are 3.9 and 20.9 µg/L, respectively. Site-specific toxicity testing with local species may be warranted for locations where Ni concentrations fall between the range in HC5s of 3.9 to 20.9 µg/L.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Ecotoxicologia/métodos , Poluentes Ambientais/toxicidade , Níquel/toxicidade , Animais , Bases de Dados Factuais , Água do Mar/química , Especificidade da Espécie , Fatores de Tempo
8.
Integr Environ Assess Manag ; 8(1): 107-19, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21793198

RESUMO

The European Union's Existing Substances regulation (EEC 793/93) was developed to assess the ecological risks posed by chemical substances such as Ni and includes the assessment of secondary poisoning risks. The basic structure of this secondary poisoning risk assessment followed the Technical Guidance Document on Risk Assessment and thus included development of predicted exposure concentrations (PECs) and predicted no-effect concentrations (PNECs). A PEC to PNEC ratio greater than 1.0 is indicative of potential risk. The Technical Guidance Document on Risk Assessment provides a generic framework for assessing secondary poisoning risks and prescribes the following terrestrial food chain: soil → earthworm → worm-eating bird or mammal. This secondary poisoning evaluation was conducted at the regional level, and it was found that the generic approach resulted in widespread estimates of potential risk, even at ambient Ni soil concentrations. Accordingly, a tiered approach was used with increasing levels of refinement, including consideration of bioavailability, consideration of a variable diet, and development of dose-based PNEC values. Based on the refined approach, all PEC to PNEC ratios were less than 1.0, except for a ratio of 1.4 in a scenario focused on a regional clay soil, which was of natural origin. This regional-level secondary poisoning evaluation highlighted key risk assessment components that should be considered in future localized secondary poisoning assessments of Ni and other metals, including ingestion rate to body weight ratios for the test organisms used to derive PNECs versus the representative wildlife species evaluated, the appropriateness of high assessment factors for deriving PNECs for naturally occurring essential elements, representative dietary compositions, relative metal bioavailability between the dietary toxicity study and natural diets, and ground-truthing of the risk predictions versus background concentrations.


Assuntos
Aves , Poluentes Ambientais/toxicidade , Cadeia Alimentar , Mamíferos , Níquel/toxicidade , Animais , Aves/metabolismo , Dieta , Monitoramento Ambiental , União Europeia , Mamíferos/metabolismo , Medição de Risco , Especificidade da Espécie
9.
Environ Toxicol Chem ; 23(9): 2221-8, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15379000

RESUMO

Of the fish species tested in chronic Ni exposures, rainbow trout (Oncorhynchus mykiss) is the most sensitive. To develop additional Ni toxicity data and to investigate the toxic mode of action for Ni, we conducted acute (96-h) and chronic (85-d early life-stage) flow-through studies using rainbow trout. In addition to standard toxicological endpoints, we investigated the effects of Ni on ionoregulatory physiology (Na, Ca, and Mg). The acute median lethal concentration for Ni was 20.8 mg/L, and the 24-h gill median lethal accumulation was 666 nmol/g wet weight. No effects on plasma Ca, Mg, or Na were observed during acute exposure. In the chronic study, no significant effects on embryo survival, swim-up, hatching, or fingerling survival or growth were observed at dissolved Ni concentrations up to 466 microg/L, the highest concentration tested. This concentration is considerably higher than the only other reported chronic no-observed-effect concentration (<33 microg/L) for rainbow trout. Accumulation of Ni in trout eggs indicates the chorion is only a partial barrier with 36%, 63%, and 1% of total accumulated Ni associated with the chorion, yolk, and embryo, respectively. Whole-egg ion concentrations were reduced by Ni exposure. However, most of this reduction occurred in the chorion rather than in the embryos, and no effects on hatching success or larval survival were observed as a result. Plasma ion concentrations measured in swim-up fingerlings at the end of the chronic-exposure period were not significantly reduced by exposure to Ni. Nickel accumulated on the gill in an exponential manner but plateaued in trout plasma at waterborne Ni concentrations of 118 microg/L or greater. Consistent with previous studies, Ni did not appear to disrupt ionoregulation in acute exposures of rainbow trout. Our results also suggest that Ni is not an ionoregulatory toxicant in long-term exposures, but the lack of effects in the highest Ni treatment precludes a definitive conclusion.


Assuntos
Níquel/toxicidade , Oncorhynchus mykiss/fisiologia , Animais , Brânquias/química , Brânquias/metabolismo , Ligantes , Mineração , Níquel/análise , Níquel/metabolismo , Oncorhynchus mykiss/embriologia , Fatores de Tempo , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Zigoto/química , Zigoto/metabolismo
10.
Environ Toxicol Chem ; 23(3): 691-6, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15285363

RESUMO

This study evaluated acute and chronic nickel (Ni) toxicity to Ceriodaphnia dubia and Hyalella azteca with the objective of generating information for the development of a biotic ligand model for Ni. Testing with C. dubia was used to evaluate the effect of ambient hardness on Ni toxicity, whereas the larger H. azteca was used to derive lethal body burden information for Ni toxicity. As was expected, acute C. dubia median lethal concentrations (LC50s) for Ni increased with increasing water hardness. The 48-h LC50s were 81, 148, 261, and 400 microg/L at hardnesses of 50, 113, 161, and 253 mg/L (as CaCO3), respectively. Ceriodaphnia dubia was found to be significantly more sensitive in chronic exposures than other species tested (including other daphnids such as Daphnia magna); chronic toxicity was less dependent on hardness than was acute toxicity. Chronic 20% effective concentrations (EC20s) were estimated at <3.8, 4.7, 4.0, and 6.9 microg/L at hardnesses of 50, 113, 161, and 253 mg/L, respectively. Testing with H. azteca resulted in a 96-h LC50 of 3,045 microg/L and a 14-d EC20 of 61 microg/L at a hardness of 98 mg/L (as CaCO3). Survival was more sensitive than was growth in the chronic study with H. azteca. The 20% lethal accumulation effect level based on measured Ni body burdens was 247 nmol/g wet weight.


Assuntos
Anfípodes/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Modelos Biológicos , Níquel/toxicidade , Água/química , Animais , Carga Corporal (Radioterapia) , Carbonato de Cálcio/análise , Relação Dose-Resposta a Droga , Dose Letal Mediana , Ligantes , Análise Espectral , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA