Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Cell ; 187(12): 3072-3089.e20, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38781967

RESUMO

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.


Assuntos
Matriz Extracelular , Mucosa Intestinal , Animais , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Matriz Extracelular/metabolismo , Miosina Tipo II/metabolismo , Mesoderma/metabolismo , Mesoderma/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Morfogênese , Metaloproteinases da Matriz/metabolismo
2.
Cell Rep Med ; 5(2): 101418, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340726

RESUMO

The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) poses a major challenge to vaccines and antiviral therapeutics due to their extensive evasion of immunity. Aiming to develop potent and broad-spectrum anticoronavirus inhibitors, we generated A1-(GGGGS)7-HR2m (A1L35HR2m) by introducing an angiotensin-converting enzyme 2 (ACE2)-derived peptide A1 to the N terminus of the viral HR2-derived peptide HR2m through a long flexible linker, which showed significantly improved antiviral activity. Further cholesterol (Chol) modification at the C terminus of A1L35HR2m greatly enhanced the inhibitory activities against SARS-CoV-2, SARS-CoV-2 VOCs, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudoviruses, with IC50 values ranging from 0.16 to 5.53 nM. A1L35HR2m-Chol also potently inhibits spike-protein-mediated cell-cell fusion and the replication of authentic Omicron BA.2.12.1, BA.5, and EG.5.1. Importantly, A1L35HR2m-Chol distributed widely in respiratory tract tissue and had a long half-life (>10 h) in vivo. Intranasal administration of A1L35HR2m-Chol to K18-hACE2 transgenic mice potently inhibited Omicron BA.5 and EG.5.1 infection both prophylactically and therapeutically.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Camundongos , Administração Intranasal , Camundongos Transgênicos , Peptídeos/farmacologia , SARS-CoV-2/genética , Antivirais/farmacologia , Antivirais/uso terapêutico
3.
Elife ; 102021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34904568

RESUMO

Transmembrane signaling proteins couple extracytosolic sensors to cytosolic effectors. Here, we examine how binding of Mg2+ to the sensor domain of an E. coli two component histidine kinase (HK), PhoQ, modulates its cytoplasmic kinase domain. We use cysteine-crosslinking and reporter-gene assays to simultaneously and independently probe the signaling state of PhoQ's sensor and autokinase domains in a set of over 30 mutants. Strikingly, conservative single-site mutations distant from the sensor or catalytic site strongly influence PhoQ's ligand-sensitivity as well as the magnitude and direction of the signal. Data from 35 mutants are explained by a semi-empirical three-domain model in which the sensor, intervening HAMP, and catalytic domains can adopt kinase-promoting or inhibiting conformations that are in allosteric communication. The catalytic and sensor domains intrinsically favor a constitutively 'kinase-on' conformation, while the HAMP domain favors the 'off' state; when coupled, they create a bistable system responsive to physiological concentrations of Mg2+. Mutations alter signaling by locally modulating domain intrinsic equilibrium constants and interdomain couplings. Our model suggests signals transmit via interdomain allostery rather than propagation of a single concerted conformational change, explaining the diversity of signaling structural transitions observed in individual HK domains.


Assuntos
Regulação Alostérica/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Magnésio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Variação Genética , Genótipo , Modelos Moleculares , Mutação
5.
Faraday Discuss ; 232(0): 9-48, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34693965

RESUMO

Membrane-peptide interactions play critical roles in many cellular and organismic functions, including protection from infection, remodeling of membranes, signaling, and ion transport. Peptides interact with membranes in a variety of ways: some associate with membrane surfaces in either intrinsically disordered conformations or well-defined secondary structures. Peptides with sufficient hydrophobicity can also insert vertically as transmembrane monomers, and many associate further into membrane-spanning helical bundles. Indeed, some peptides progress through each of these stages in the process of forming oligomeric bundles. In each case, the structure of the peptide and the membrane represent a delicate balance between peptide-membrane and peptide-peptide interactions. We will review this literature from the perspective of several biologically important systems, including antimicrobial peptides and their mimics, α-synuclein, receptor tyrosine kinases, and ion channels. We also discuss the use of de novo design to construct models to test our understanding of the underlying principles and to provide useful leads for pharmaceutical intervention of diseases.


Assuntos
Peptídeos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de Proteína
6.
Nat Chem ; 13(7): 643-650, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33972753

RESUMO

The design of peptides that assemble in membranes to form functional ion channels is challenging. Specifically, hydrophobic interactions must be designed between the peptides and at the peptide-lipid interfaces simultaneously. Here, we take a multi-step approach towards this problem. First, we use rational de novo design to generate water-soluble α-helical barrels with polar interiors, and confirm their structures using high-resolution X-ray crystallography. These α-helical barrels have water-filled lumens like those of transmembrane channels. Next, we modify the sequences to facilitate their insertion into lipid bilayers. Single-channel electrical recordings and fluorescent imaging of the peptides in membranes show monodisperse, cation-selective channels of unitary conductance. Surprisingly, however, an X-ray structure solved from the lipidic cubic phase for one peptide reveals an alternative state with tightly packed helices and a constricted channel. To reconcile these observations, we perform computational analyses to compare the properties of possible different states of the peptide.


Assuntos
Canais Iônicos/química , Bicamadas Lipídicas/química , Peptídeos/química , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Engenharia de Proteínas , Solubilidade , Água/química
7.
Biochemistry ; 60(21): 1722-1730, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34010565

RESUMO

The fluorescent reporters commonly used to visualize proteins can perturb both protein structure and function. Recently, we found that 4-cyanotryptophan (4CN-Trp), a blue fluorescent amino acid, is suitable for one-photon imaging applications. Here, we demonstrate its utility in two-photon fluorescence microscopy by using it to image integrins on cell surfaces. Specifically, we used solid-phase peptide synthesis to generate CHAMP peptides labeled with 4-cyanoindole (4CNI) at their N-termini to image integrins on cell surfaces. CHAMP (computed helical anti-membrane protein) peptides spontaneously insert into membrane bilayers to target integrin transmembrane domains and cause integrin activation. We found that 4CNI labeling did not perturb the ability of CHAMP peptides to insert into membranes, bind to integrins, or cause integrin activation. We then used two-photon fluorescence microscopy to image 4CNI-containing integrins on the surface of platelets. Compared to a 4CNI-labeled scrambled peptide that uniformly decorated cell surfaces, 4CNI-labeled CHAMP peptides were present in discrete blue foci. To confirm that these foci represented CN peptide-containing integrins, we co-stained platelets with integrin-specific fluorescent monoclonal antibodies and found that CN peptide and antibody fluorescence coincided. Because 4CNI can readily be biosynthetically incorporated into proteins with little if any effect on protein structure and function, it provides a facile way to directly monitor protein behavior and protein-protein interactions in cellular environments. In addition, these results clearly demonstrate that the two-photon excitation cross section of 4CN-Trp is sufficiently large to make it a useful two-photon fluorescence reporter for biological applications.


Assuntos
Integrinas/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Triptofano/análogos & derivados , Aminoácidos/metabolismo , Plaquetas/metabolismo , Membrana Celular/metabolismo , Integrinas/fisiologia , Peptídeos/síntese química , Peptídeos/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Triptofano/síntese química , Triptofano/química
8.
J Am Chem Soc ; 143(9): 3330-3339, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33635059

RESUMO

The design of catalytic proteins with functional sites capable of specific chemistry is gaining momentum and a number of artificial enzymes have recently been reported, including hydrolases, oxidoreductases, retro-aldolases, and others. Our goal is to develop a peptide ligase for robust catalysis of amide bond formation that possesses no stringent restrictions to the amino acid composition at the ligation junction. We report here the successful completion of the first step in this long-term project by building a completely de novo protein with predefined acyl transfer catalytic activity. We applied a minimalist approach to rationally design an oxyanion hole within a small cavity that contains an adjacent thiol nucleophile. The N-terminus of the α-helix with unpaired hydrogen-bond donors was exploited as a structural motif to stabilize negatively charged tetrahedral intermediates in nucleophilic addition-elimination reactions at the acyl group. Cysteine acting as a principal catalytic residue was introduced at the second residue position of the α-helix N-terminus in a designed three-α-helix protein based on structural informatics prediction. We showed that this minimal set of functional elements is sufficient for the emergence of catalytic activity in a de novo protein. Using peptide-αthioesters as acyl-donors, we demonstrated their catalyzed amidation concomitant with hydrolysis and proved that the environment at the catalytic site critically influences the reaction outcome. These results represent a promising starting point for the development of efficient catalysts for protein labeling, conjugation, and peptide ligation.


Assuntos
Domínio Catalítico , Peptídeo Sintases/química , Aciltransferases/síntese química , Aciltransferases/química , Sequência de Aminoácidos , Biocatálise , Cisteína/química , Hidrólise , Cinética , Peptídeo Sintases/síntese química , Peptídeos/síntese química , Conformação Proteica em alfa-Hélice , Engenharia de Proteínas , Especificidade por Substrato
9.
Nat Methods ; 16(4): 319-322, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923372

RESUMO

Site-specific protein cleavage is essential for many protein-production protocols and typically requires proteases. We report the development of a chemical protein-cleavage method that is achieved through the use of a sequence-specific nickel-assisted cleavage (SNAC)-tag. We demonstrate that the SNAC-tag can be inserted before both water-soluble and membrane proteins to achieve fusion protein cleavage under biocompatible conditions with efficiency comparable to that of enzymes, and that the method works even when enzymatic cleavages fail.


Assuntos
Enzimas/química , Níquel/química , Proteínas/química , Materiais Biocompatíveis , Cromatografia Líquida de Alta Pressão , Biologia Computacional , DNA/química , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/metabolismo , Técnicas Genéticas , Hidrólise , Espectrometria de Massas , Biblioteca de Peptídeos , Peptídeos/química , Domínios Proteicos , Proteólise , Proteínas Recombinantes/química , Especificidade por Substrato , Temperatura , Trombina/química
10.
J Phys Chem B ; 123(8): 1797-1807, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30694671

RESUMO

One of the fundamental events in protein folding is α-helix formation, which involves sequential development of a series of helical hydrogen bonds between the backbone C═O group of residues i and the -NH group of residues i + 4. While we now know a great deal about α-helix folding dynamics, a key question that remains to be answered is where the productive helical nucleation event occurs. Statistically, a helical nucleus (or the first helical hydrogen-bond) can form anywhere within the peptide sequence in question; however, the one that leads to productive folding may only form at a preferred location. This consideration is based on the fact that the α-helical structure is inherently asymmetric, due to the specific alignment of the helical hydrogen bonds. While this hypothesis is plausible, validating it is challenging because there is not an experimental observable that can be used to directly pinpoint the location of the productive nucleation process. Therefore, in this study we combine several techniques, including peptide cross-linking, laser-induced temperature-jump infrared spectroscopy, and molecular dynamics simulations, to tackle this challenge. Taken together, our experimental and simulation results support an α-helix folding mechanism wherein the productive nucleus is formed at the N-terminus, which propagates toward the C-terminal end of the peptide to yield the folded structure. In addition, our results show that incorporation of a cross-linker can lead to formation of differently folded conformations, underscoring the need for all-atom simulations to quantitatively assess the proposed cross-linking design.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Dobramento de Proteína , Cinética , Conformação Proteica em alfa-Hélice , Temperatura
11.
Cancer Cell ; 34(5): 792-806.e5, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30449325

RESUMO

Deregulated HER2 is a target of many approved cancer drugs. We analyzed 111,176 patient tumors and identified recurrent mutations in HER2 transmembrane domain (TMD) and juxtamembrane domain (JMD) that include G660D, R678Q, E693K, and Q709L. Using a saturation mutagenesis screen and testing of patient-derived mutations we found several activating TMD and JMD mutations. Structural modeling and analysis showed that the TMD/JMD mutations function by improving the active dimer interface or stabilizing an activating conformation. Further, we found that HER2 G660D employed asymmetric kinase dimerization for activation and signaling. Importantly, anti-HER2 antibodies and small-molecule kinase inhibitors blocked the activity of TMD/JMD mutants. Consistent with this, a G660D germline mutant lung cancer patient showed remarkable clinical response to HER2 blockade.


Assuntos
Neoplasias Pulmonares/genética , Domínios Proteicos/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Adulto , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Mutação/genética , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Transdução de Sinais
12.
Biopolymers ; 109(10): e23339, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30203532

RESUMO

De novo design provides an attractive approach, which allows one to test and refine the principles guiding metalloproteins in defining the geometry and reactivity of their metal ion cofactors. Although impressive progress has been made in designing proteins that bind transition metal ions including iron-sulfur clusters, the design of tetranuclear clusters with oxygen-rich environments remains in its infancy. In previous work, we described the design of homotetrameric four-helix bundles that bind tetra-Zn2+ clusters. The crystal structures of the helical proteins were in good agreement with the overall design, and the metal-binding and conformational properties of the helical bundles in solution were consistent with the crystal structures. However, the corresponding apo-proteins were not fully folded in solution. In this work, we design three peptides, based on the crystal structure of the original bundles. One of the peptides forms tetramers in aqueous solution in the absence of metal ions as assessed by CD and NMR. It also binds Zn2+ in the intended stoichiometry. These studies strongly suggest that the desired structure has been achieved in the apo state, providing evidence that the peptide is able to actively impart the designed geometry to the metal cluster.


Assuntos
Metaloproteínas/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Metaloproteínas/química , Peptídeos/química , Soluções
13.
Angew Chem Int Ed Engl ; 57(39): 12702-12706, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30118570

RESUMO

Analogous to reversible post-translational protein modifications, the ability to attach and subsequently remove modifications on proteins would be valuable for protein and biological research. Although bioorthogonal functionalities have been developed to conjugate or cleave protein modifications, they are introduced into proteins on separate residues and often with bulky side chains, limiting their use to one type of control and primarily protein surface. Here we achieved dual control on one residue by genetically encoding S-propargyl-cysteine (SprC), which has bioorthogonal alkyne and propargyl groups in a compact structure, permitting usage in protein interior in addition to surface. We demonstrated its incorporation at the dimer interface of glutathione transferase for in vivo crosslinking via thiol-yne click chemistry, and at the active site of human rhinovirus 3C protease for masking and then turning on enzyme activity via Pd-cleavage of SprC into Cys. In addition, we installed biotin onto EGFP via Sonogashira coupling of SprC and then tracelessly removed it via Pd cleavage. SprC is small in size, commercially available, nontoxic, and allows for bond building and breaking on a single residue. Genetically encoded SprC will be valuable for chemically controlling proteins with an essential Cys and for reversible protein modifications.


Assuntos
Cisteína Endopeptidases/metabolismo , Cisteína/química , Proteínas de Fluorescência Verde/química , Proteínas Virais/metabolismo , Proteases Virais 3C , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Biotina/química , Catálise , Domínio Catalítico , Química Click , Cisteína/metabolismo , Cisteína Endopeptidases/química , Enterovirus/enzimologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Methanosarcina/metabolismo , Mutagênese Sítio-Dirigida , Paládio/química , Pargilina/química , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Proteínas Virais/química
14.
Nat Chem Biol ; 14(9): 870-875, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061717

RESUMO

Amyloids adopt 'cross-ß' structures composed of long, twisted fibrils with ß-strands running perpendicular to the fibril axis. Recently, a toxic peptide was proposed to form amyloid-like cross-α structures in solution, with a planar bilayer-like assembly observed in the crystal structure. Here we crystallographically characterize designed peptides that assemble into spiraling cross-α amyloid-like structures, which resemble twisted ß-amyloid fibrils. The peptides form helical dimers, stabilized by packing of small and apolar residues, and the dimers further assemble into cross-α amyloid-like fibrils with superhelical pitches ranging from 170 Å to 200 Å. When a small residue that appeared critical for packing was converted to leucine, it resulted in structural rearrangement to a helical polymer. Fluorescently tagged versions of the designed peptides form puncta in mammalian cells, which recover from photobleaching with markedly different kinetics. These structural folds could be potentially useful for directing in vivo protein assemblies with predetermined spacing and stabilities.


Assuntos
Amiloide/química , Peptídeos/química , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , Peptídeos/síntese química , Conformação Proteica
15.
Protein Eng Des Sel ; 31(5): 181-190, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992271

RESUMO

Computationally designed transmembrane α-helical peptides (CHAMP) have been used to compete for helix-helix interactions within the membrane, enabling the ability to probe the activation of the integrins αIIbß3 and αvß3. Here, this method is extended towards the design of CHAMP peptides that inhibit the association of the α5ß1 transmembrane (TM) domains, targeting the Ala-X3-Gly motif within α5. Our previous design algorithm was performed alongside a new workflow implemented within the widely used Rosetta molecular modeling suite. Peptides from each computational approach activated integrin α5ß1 but not αVß3 in human endothelial cells. Two CHAMP peptides were shown to directly associate with an α5 TM domain peptide in detergent micelles to a similar degree as a ß1 TM peptide does. By solution-state nuclear magnetic resonance, one of these CHAMP peptides was shown to bind primarily the integrin ß1 TM domain, which itself has a Gly-X3-Gly motif. The second peptide associated modestly with both α5 and ß1 constructs, with slight preference for α5. Although the design goal was not fully realized, this work characterizes novel CHAMP peptides activating α5ß1 that can serve as useful reagents for probing integrin biology.


Assuntos
Membrana Celular/metabolismo , Desenho Assistido por Computador , Integrina alfa5beta1/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Desenho de Fármacos , Humanos , Micelas , Peptídeos/metabolismo , Conformação Proteica em alfa-Hélice , Domínios Proteicos
16.
ACS Nano ; 12(7): 6554-6562, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29842775

RESUMO

Biomaterials derived via programmable supramolecular protein assembly provide a viable means of constructing precisely defined structures. Here, we present programmed superstructures of AuPt nanoparticles (NPs) on carbon nanotubes (CNTs) that exhibit distinct electrocatalytic activities with respect to the nanoparticle positions via rationally modulated peptide-mediated assembly. De novo designed peptides assemble into six-helix bundles along the CNT axis to form a suprahelical structure. Surface cysteine residues of the peptides create AuPt-specific nucleation site, which allow for precise positioning of NPs onto helical geometries, as confirmed by 3-D reconstruction using electron tomography. The electrocatalytic model system, i.e., AuPt for oxygen reduction, yields electrochemical response signals that reflect the controlled arrangement of NPs in the intended assemblies. Our design approach can be expanded to versatile fields to build sophisticated functional assemblies.


Assuntos
Ouro/química , Nanopartículas/química , Nanotubos de Carbono/química , Oxigênio/química , Peptídeos/química , Platina/química , Sequência de Aminoácidos , Catálise , Eletricidade , Modelos Moleculares , Nanopartículas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Oxirredução
17.
Chembiochem ; 19(9): 902-906, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29417711

RESUMO

Although helices play key roles in peptide-protein and protein-protein interactions, the helical conformation is generally unstable for short peptides (10-15 residues) in aqueous solution in the absence of their binding partners. Thus, stabilizing the helical conformation of peptides can lead to increases in binding potency, specificity, and stability towards proteolytic degradation. Helices have been successfully stabilized by introducing side chain-to-side chain crosslinks within the central portion of the helix. However, this approach leaves the ends of the helix free, thus leading to fraying and exposure of the non-hydrogen-bonded amide groups to solvent. Here, we develop a "capped-strapped" peptide strategy to stabilize helices by embedding the entire length of the helix within a macrocycle, which also includes a semirigid organic template as well as end-capping interactions. We have designed a ten-residue capped-strapped helical peptide that behaves like a miniprotein, with a cooperative thermal unfolding transition and Tm ≈70 °C, unprecedented for helical peptides of this length. The NMR structure determination confirmed the design, and X-ray crystallography revealed a novel quaternary structure with implications for foldamer design.


Assuntos
Compostos Macrocíclicos/química , Peptídeos/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Desdobramento de Proteína , Temperatura
18.
Proc Natl Acad Sci U S A ; 114(41): 10852-10857, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973862

RESUMO

The folding of natural proteins typically relies on hydrophobic packing, metal binding, or disulfide bond formation in the protein core. Alternatively, a 3D structure can be defined by incorporating a multivalent cross-linking agent, and this approach has been successfully developed for the selection of bicyclic peptides from large random-sequence libraries. By contrast, there is no general method for the de novo computational design of multicross-linked proteins with predictable and well-defined folds, including ones not found in nature. Here we use Rosetta and Tertiary Motifs (TERMs) to design small proteins that fold around multivalent cross-linkers. The hydrophobic cross-linkers stabilize the fold by macrocyclic restraints, and they also form an integral part of a small apolar core. The designed CovCore proteins were prepared by chemical synthesis, and their structures were determined by solution NMR or X-ray crystallography. These mesosized proteins, lying between conventional proteins and small peptides, are easily accessible either through biosynthetic precursors or chemical synthesis. The unique tertiary structures and ease of synthesis of CovCore proteins indicate that they should provide versatile templates for developing inhibitors of protein-protein interactions.


Assuntos
Coronavirus/fisiologia , Engenharia de Proteínas/métodos , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas do Core Viral/química , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Homologia de Sequência
19.
ACS Chem Neurosci ; 8(6): 1313-1326, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28278376

RESUMO

For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein-protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein-protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein-protein interaction, the interaction between the voltage-gated calcium channel (CaV) pore-forming subunit α-interaction domain (AID) and cytoplasmic ß-subunit (CaVß). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:CaVß interactions and reduce the entropic penalty associated with AID binding to CaVß. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the CaVα1:CaVß interaction that modulate CaV function in an CaVß isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein-protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based CaV modulator design.


Assuntos
Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Peptídeos/farmacologia , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Humanos , Peptídeos/metabolismo
20.
J Am Chem Soc ; 138(31): 9840-52, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27414264

RESUMO

The amyloid-ß (Aß) peptide of Alzheimer's disease (AD) forms polymorphic fibrils on the micrometer and molecular scales. Various fibril growth conditions have been identified to cause polymorphism, but the intrinsic amino acid sequence basis for this polymorphism has been unclear. Several single-site mutations in the center of the Aß sequence cause different disease phenotypes and fibrillization properties. The E22G (Arctic) mutant is found in familial AD and forms protofibrils more rapidly than wild-type Aß. Here, we use solid-state NMR spectroscopy to investigate the structure, dynamics, hydration and morphology of Arctic E22G Aß40 fibrils. (13)C, (15)N-labeled synthetic E22G Aß40 peptides are studied and compared with wild-type and Osaka E22Δ Aß40 fibrils. Under the same fibrillization conditions, Arctic Aß40 exhibits a high degree of polymorphism, showing at least four sets of NMR chemical shifts for various residues, while the Osaka and wild-type Aß40 fibrils show a single or a predominant set of chemical shifts. Thus, structural polymorphism is intrinsic to the Arctic E22G Aß40 sequence. Chemical shifts and inter-residue contacts obtained from 2D correlation spectra indicate that one of the major Arctic conformers has surprisingly high structural similarity with wild-type Aß42. (13)C-(1)H dipolar order parameters, (1)H rotating-frame spin-lattice relaxation times and water-to-protein spin diffusion experiments reveal substantial differences in the dynamics and hydration of Arctic, Osaka and wild-type Aß40 fibrils. Together, these results strongly suggest that electrostatic interactions in the center of the Aß peptide sequence play a crucial role in the three-dimensional fold of the fibrils, and by inference, fibril-induced neuronal toxicity and AD pathogenesis.


Assuntos
Peptídeos beta-Amiloides/química , Espectroscopia de Ressonância Magnética , Benzotiazóis , Sítios de Ligação , Guanidina/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Mutação , Peptídeos/química , Fenótipo , Conformação Proteica , Temperatura , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA