Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 106(1): 783-791, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36424318

RESUMO

Mammary gland secretory activity is modulated by systemic and local factors; however, the relationship between these factors is unknown. The aim of this study was to determine how a local factor, such as incomplete milking, affects mammary epithelial cell activity, number, and responsiveness to blood prolactin (PRL). Eight cows in mid-lactation were differentially milked (i.e., their right quarters were milked incompletely at approximately 70%, and their left quarters were milked completely, twice daily for 4 wk). Throughout the experiment, milk yield was measured at the quarter level. Milk samples were collected from each quarter once a week to assess the milk components, and epithelial cell concentrations, as well as to isolate milk fat globule RNA. In the weeks before and after the experiment, mammary gland functional capacity was evaluated by measuring the volume of milk harvested after complete filling of the gland. At the end of the last experimental week, mammary gland biopsies were performed on each rear quarter. The milk production of quarters milked completely remained stable during the treatment period, whereas, as expected, the milk production of quarters milked incompletely was only 53% of completely milked quarters at the end of the period. Accordingly, the expression of genes related to milk synthesis (CSN2, LALBA, and ACACA) in milk fat was lower in the quarters that were milked incompletely. Incomplete milking decreased the milk lactose content, indicating a loss of integrity of tight junctions. The total yield of epithelial cells in milk was not affected, but their concentration in milk, the BAX:BCL2 gene expression ratio, and the loss of mammary functional capacity were greater in the quarters milked incompletely, suggesting an acceleration of involution in those quarters. The expression of the short isoform of the PRL receptor gene (PRLR) tended to be lower, and the expression of STAT5A and STAT5B tended to decline in the quarters milked incompletely. In mammary gland biopsy samples, the number of both short and long isoforms of the PRLR were not affected, nor were the amount and activation of STAT3 and STAT5. However, the ratio of PRLR short isoform to PRLR long isoform was lower in the quarters milked incompletely. The decrease in milk yield induced by incomplete milking is rapid and associated with a decrease in mammary epithelial cell activity and a decrease in the number of secretory epithelial cells. The results of this experiment provide only limited support for the hypothesis that modulation of the mammary gland's responsiveness to PRL is part of the mechanism by which local factors, such as incomplete milking, modulate milk synthesis.


Assuntos
Lactação , Glândulas Mamárias Animais , Feminino , Bovinos , Animais , Glândulas Mamárias Animais/metabolismo , Lactação/fisiologia , Leite/metabolismo , Lactose/metabolismo , Células Epiteliais , Indústria de Laticínios/métodos
2.
Structure ; 8(5): 453-62, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10896473

RESUMO

BACKGROUND: ADP-L-glycero--mannoheptose 6-epimerase (AGME) is required for lipopolysaccharide (LPS) biosynthesis in most genera of pathogenic and non-pathogenic Gram-negative bacteria. It catalyzes the interconversion of ADP-D-glycero-D-mannoheptose and ADP-L-glycero-D-mannoheptose, a precursor of the seven-carbon sugar L-glycero-mannoheptose (heptose). Heptose is an obligatory component of the LPS core domain; its absence results in a truncated LPS structure resulting in susceptibility to hydrophobic antibiotics. Heptose is not found in mammalian cells, thus its biosynthetic pathway in bacteria presents a unique target for the design of novel antimicrobial agents. RESULTS: The structure of AGME, in complex with NADP and the catalytic inhibitor ADP-glucose, has been determined at 2.0 A resolution by multiwavelength anomalous diffraction (MAD) phasing methods. AGME is a homopentameric enzyme, which crystallizes with two pentamers in the asymmetric unit. The location of 70 crystallographically independent selenium sites was a key step in the structure determination process. Each monomer comprises two domains: a large N-terminal domain, consisting of a modified seven-stranded Rossmann fold that is associated with NADP binding; and a smaller alpha/beta C-terminal domain involved in substrate binding. CONCLUSIONS: The first structure of an LPS core biosynthetic enzyme leads to an understanding of the mechanism of the conversion between ADP-D-glycero--mannoheptose and ADP-L-glycero-D-mannoheptose. On the basis of its high structural similarity to UDP-galactose epimerase and the three-dimensional positions of the conserved residues Ser116, Tyr140 and Lys144, AGME was classified as a member of the short-chain dehydrogenase/reductase (SDR) superfamily. This study should prove useful in the design of mechanistic and structure-based inhibitors of the AGME catalyzed reaction.


Assuntos
Proteínas de Bactérias/química , Carboidratos Epimerases/química , Modelos Moleculares , Estrutura Quaternária de Proteína , Adenosina Difosfato Glucose/química , Adenosina Difosfato Glucose/farmacologia , Sítios de Ligação , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/metabolismo , Catálise , Cristalografia por Raios X , Escherichia coli/enzimologia , Lipopolissacarídeos/biossíntese , NADP/metabolismo , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Selênio/química , Selênio/metabolismo , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA