Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Eye Vis (Lond) ; 11(1): 20, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822380

RESUMO

The cornea, consisting of three cellular and two non-cellular layers, is the outermost part of the eyeball and frequently injured by external physical, chemical, and microbial insults. The epithelial-to-mesenchymal transition (EMT) plays a crucial role in the repair of corneal injuries. Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor involved in EMT, is expressed in the corneal tissues. It regulates cell activities like migration, transformation, and proliferation, and thereby affects tissue inflammation, fibrosis, tumor metastasis, and necrosis by mediating various major signaling pathways, including transforming growth factor (TGF)-ß. Dysfunction of ZEB1 would impair corneal tissue repair leading to epithelial healing delay, interstitial fibrosis, neovascularization, and squamous cell metaplasia. Understanding the mechanism underlying ZEB1 regulation of corneal injury repair will help us to formulate a therapeutic approach to enhance corneal injury repair.

2.
iScience ; 27(5): 109694, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38660397

RESUMO

ZEB1 is an essential factor in embryonic development. In adults, it is often highly expressed in malignant tumors with low expression in normal tissues. The major biological function of ZEB1 in developing embryos and progressing cancers is to transdifferentiate cells from an epithelial to mesenchymal phenotype; but what roles ZEB1 plays in normal adult tissues are largely unknown. We previously reported that the reduction of Zeb1 in monoallelic global knockout (Zeb1+/-) mice reduced corneal inflammation-associated neovascularization following alkali burn. To uncover the cellular mechanism underlying the Zeb1 regulation of corneal inflammation, we functionally deleted Zeb1 alleles in Csf1r+ myeloid cells using a conditional knockout (cKO) strategy and found that Zeb1 cKO reduced leukocytes in the cornea after alkali burn. The reduction of immune cells was due to their increased apoptotic rate and linked to a Zeb1-downregulated apoptotic pathway. We conclude that Zeb1 facilitates corneal inflammatory response by maintaining Csf1r+ cell viability.

3.
Cell Rep ; 42(9): 113054, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37656622

RESUMO

Most mutations in retinitis pigmentosa (RP) arise in rod photoreceptors, but cone photoreceptors, responsible for high-resolution daylight and color vision, are subsequently affected, causing the most debilitating features of the disease. We used mass spectroscopy to follow 13C metabolites delivered to the outer retina and single-cell RNA sequencing to assess photoreceptor transcriptomes. The S cone metabolic transcriptome suggests engagement of the TCA cycle and ongoing response to ROS characteristic of oxidative phosphorylation, which we link to their histone modification transcriptome. Tumor necrosis factor (TNF) and its downstream effector RIP3, which drive ROS generation via mitochondrial dysfunction, are induced and activated as S cones undergo early apoptosis in RP. The long/medium-wavelength (L/M) cone transcriptome shows enhanced glycolytic capacity, which maintains their function as RP progresses. Then, as extracellular glucose eventually diminishes, L/M cones are sustained in long-term dormancy by lactate metabolism.


Assuntos
Células Fotorreceptoras Retinianas Cones , Retinose Pigmentar , Humanos , Células Fotorreceptoras Retinianas Cones/metabolismo , Transcriptoma/genética , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retinose Pigmentar/patologia
4.
Commun Biol ; 6(1): 434, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081200

RESUMO

The cornea is the outmost ocular tissue and plays an important role in protecting the eye from environmental insults. Corneal epithelial wounding provokes pain and fear and contributes to the most ocular trauma emergency assessments worldwide. ZEB1 is an essential transcription factor in development; but its roles in adult tissues are not clear. We identify Zeb1 is an intrinsic factor that facilitates corneal epithelial wound healing. In this study, we demonstrate that monoallelic deletion of Zeb1 significantly expedites corneal cell death and inhibits corneal epithelial EMT-related cell migration upon an epithelial debridement. We provide evidence that Zeb1-regulation of corneal epithelial wound healing is through the repression of genes required for Tnfa-induced epithelial cell death and the induction of genes beneficial for epithelial cell migration. We suggest utilizing TNF-α antagonists would reduce TNF/TNFR1-induced cell death in the corneal epithelium and inflammation in the corneal stroma to help corneal wound healing.


Assuntos
Lesões da Córnea , Epitélio Corneano , Humanos , Epitélio Corneano/metabolismo , Córnea/metabolismo , Cicatrização/genética , Lesões da Córnea/genética , Lesões da Córnea/metabolismo , Células Epiteliais , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
5.
Cell Rep ; 41(1): 111452, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198275

RESUMO

Epithelial-mesenchymal transition (EMT) facilitates cancer invasion and is initiated by mesenchyme-driving transcription factors and actin cytoskeletal assembly. We show a cytoplasmic-to-nuclear transport gradient of the EMT transcription factor Zeb1 toward sites of invasion in lung adenocarcinoma (LUAD), driven by the EMT inducer Tgfb, which is expressed in M2 polarized macrophages. We show that Zeb1 binds free actin monomers and RhoA in the cytoplasm to inhibit actin polymerization, blocking cell migration and Yap1 nuclear transport. Tgfb causes turnover of the scaffold protein Rassf1a, which targets RhoA. Release of this RhoA inhibition in response to Tgfb overcomes Zeb1's block of cytoskeleton assembly and frees it for nuclear transport. A ZEB1 nuclear transport signature highlights EMT progression, identifies dedifferentiated invasive/metastatic human LUADs, and predicts survival. Blocking Zeb1 nuclear transport with a small molecule identified in this study inhibits cytoskeleton assembly, cell migration, Yap1 nuclear transport, EMT, and precancerous-to-malignant transition.


Assuntos
Neoplasias Pulmonares , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Actinas/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
6.
Neuroimage Rep ; 2(2)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36032692

RESUMO

Background and purpose: Large MRI studies often pool data gathered from widely varying imaging sequences. Pooled data creates a potential source of variation in structural analyses which may cause misinterpretation of findings. The purpose of this study is to determine if data acquired using different scan sequences, head coils and scanners offers consistent structural measurements. Materials and methods: Participants (163 right-handed males: 82 typically developing controls, 81 participants with autism spectrum disorder) were scanned on the same day using an MPRAGE sequence with a 12-channel headcoil on a Siemens 3T Trio scanner and an MP2RAGE sequence with a 64-channel headcoil on a Siemens 3T Prisma scanner. Segmentation was performed using FreeSurfer to identify regions exhibiting variation between sequences on measures of volume, surface area, and cortical thickness. Intraclass correlation coefficient (ICC) and mean percent difference (MPD) were used as test-retest reproducibility measures. Results: ICC for total brain segmented volume yielded a 0.99 intraclass correlation, demonstrating high overall volumetric reproducibility. Comparison of individual regions of interest resulted in greater variation. Volumetric variability, although low overall, was greatest in the entorhinal cortex (ICC = 0.71), frontal (ICC = 0.60) and temporal (ICC = 0.60) poles. Surface area variability was greatest in the insula (ICC = 0.65), temporal (ICC = 0.64) and frontal (ICC = 0.68) poles. Cortical thickness was most variable in the frontal (ICC = 0.41) and temporal (ICC = 0.35) poles. Conclusion: Data collected on different scanners and head coils using MPRAGE and MP2RAGE are generally consistent for surface area and volume estimates. However, regional variability may constrain accuracy in some regions and cortical thickness measurements exhibit higher generalized variability.

7.
Cell Oncol (Dordr) ; 45(2): 309-321, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35404029

RESUMO

PURPOSE: The mechanism underlying cancer heterogeneity and plasticity remains elusive, in spite of the fact that multiple hypotheses have been put forward. We intended to clarify this heterogeneity in uveal melanoma (UM) by looking for evidence of cancer stem cell involvement and a potential role of ZEB1 in cancer cell plasticity. METHODS: Spheroids derived from human UM cells as well as xenograft tumors in nude mice were dissected for signs of heterogeneity and plasticity. Two human UM cell lines were studied: the epithelioid type C918 cell line and the spindle type OCM1 cell line. We knocked down ZEB1 in both cell lines to investigate its involvement in the regulation of stem-like cell formation and vascularization by qRT-PCR, immunohistochemistry, flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. RESULTS: We found that a small side population (SP) in OCM1 showed stem cell-like properties such as heterogeneity, remote dissemination and nuclear dye exclusion after spheroid formation in vitro. ZEB1 regulated UM stem cell generation indirectly by promoting cell proliferation to form large size tumors in vivo and spheroid in vitro, and directly by binding to stemness genes such as TERT and ABCB1. In addition, we found that ZEB1 participates in vasculogenic mimicry system formation through the regulation of CD34 and VE-cadherin expression. CONCLUSIONS: From our data we conclude that cancer stem cells may contribute to UM heterogeneity and plasticity and that ZEB1 may play a regulatory role in it.


Assuntos
Melanoma , Neoplasias Uveais , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/metabolismo , Camundongos , Camundongos Nus , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia
8.
Sci Adv ; 7(21)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020945

RESUMO

The PDL1-PD1 immune checkpoint inhibits T cell activation, and its blockade is effective in a subset of patients. Studies are investigating how checkpoints are hijacked by cancer cells and why most patients remain resistant to immunotherapy. Epithelial mesenchymal transition (EMT), which drives tumor cell invasion via the Zeb1 transcription factor, is linked to immunotherapy resistance. In addition, M2-polarized tumor-associated macrophages (TAMs), which inhibit T cell migration and activation, may also cause immunotherapy resistance. How EMT in invading cancer cells is linked to therapy resistance and events driving TAM M2 polarization are therefore important questions. We show that Zeb1 links these two resistance pathways because it is required for PDL1 expression on invading lung cancer cells, and it also induces CD47 on these invading cells, which drives M2 polarization of adjacent TAMs. Resulting reprogramming of the microenvironment around invading cells shields them from the hostile inflammatory environment surrounding tumors.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas de Checkpoint Imunológico , Neoplasias Pulmonares , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Linhagem Celular Tumoral , Movimento Celular , Humanos , Imunoterapia/métodos , Microambiente Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
9.
Cells ; 10(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923743

RESUMO

ZEB1 is an important transcription factor for epithelial to mesenchymal transition (EMT) and in the regulation of cell differentiation and transformation. In the cornea, ZEB1 presents in all three layers: the epithelium, the stroma and the endothelium. Mutations of ZEB1 have been linked to multiple corneal genetic defects, particularly to the corneal dystrophies including keratoconus (KD), Fuchs endothelial corneal dystrophy (FECD), and posterior polymorphous corneal dystrophy (PPCD). Accumulating evidence indicates that dysfunction of ZEB1 may affect corneal stem cell homeostasis, and cause corneal cell apoptosis, stromal fibrosis, angiogenesis, squamous metaplasia. Understanding how ZEB1 regulates the initiation and progression of these disorders will help us in targeting ZEB1 for potential avenues to generate therapeutics to treat various ZEB1-related disorders.


Assuntos
Córnea/metabolismo , Regulação da Expressão Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Córnea/patologia , Transição Epitelial-Mesenquimal/genética , Humanos , Inflamação/genética , Inflamação/patologia , Cicatrização/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
10.
Commun Biol ; 3(1): 349, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620870

RESUMO

Angiogenesis is required for tissue repair; but abnormal angiogenesis or neovascularization (NV) causes diseases in the eye. The avascular status in the cornea is a prerequisite for corneal clarity and thought to be maintained by the equilibrium between proangiogenic and antiangiogenic factors that controls proliferation and migration of vascular endothelial cells (ECs) sprouting from the pericorneal plexus. VEGF is the most important intrinsic factor for angiogenesis; anti-VEGF therapies are available for treating ocular NV. However, the effectiveness of the therapies is limited because of VEGF-independent mechanism(s). We show that Zeb1 is an important factor promoting vascular EC proliferation and corneal NV; and a couple of small molecule inhibitors can evict Ctbp from the Zeb1-Ctbp complex, thereby reducing EC Zeb1 expression, proliferation, and corneal NV. We conclude that Zeb1-regulation of angiogenesis is independent of Vegf and that the ZEB1-CtBP inhibitors can be of potential therapeutic significance in treating corneal NV.


Assuntos
Proliferação de Células , Neovascularização da Córnea/fisiopatologia , Endotélio Vascular/citologia , Regulação da Expressão Gênica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/fisiologia , Animais , Endotélio Vascular/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator A de Crescimento do Endotélio Vascular/genética
11.
Stem Cell Res Ther ; 11(1): 142, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234075

RESUMO

BACKGROUND: Retinal degeneration is a leading cause of blindness in the world; its etiology is complex and involves genetic defects and stress-associated aging. In addition to gene therapies for known genetically defective retinal degeneration, cellular therapies have been widely explored for restoring vision in both preclinical animal models and clinical trials. Stem cells of distinct tissue sources and their derived lineages have been tested for treating retinal degeneration; most of them were reported to be effective to some extent in restoring/improving deteriorated vision. Whether this visual improvement is due to a functional integration of grafted cells to substitute for lost retinal neurons in recipients or due to their neuroprotective and neurotrophic effects to retain recipient functional neurons, or both, is still under debate. METHODS: We compared the results of subretinal transplantation of various somatic cell types, such as stem cells and differentiated cells, into RhoP23H/+ mice, a retinal degeneration model for human retinitis pigmentosa (RP) by evaluating their optokinetic response (OKR) and retinal histology. We identified some paracrine factors in the media that cultured cells secreted by western blotting (WB) and functionally evaluated the vascular endothelial growth factor Vegfa for its potential neurotrophic and neuroprotective effects on the neuroretina of model animals by intravitreal injection of VEGF antibody. RESULTS: We found that live cells, regardless of whether they were stem cells or differentiated cell types, had a positive effect on improving degenerating retinas after subretinal transplantation; the efficacy depended on their survival duration in the host tissue. A few paracrine factors were identified in cell culture media; Vegfa was the most relevant neurotrophic and neuroprotective factor identified by our experiments to extend neuron survival duration in vivo. CONCLUSIONS: Cellular therapy-produced benefits for remediating retinal degeneration are mostly, if not completely, due to a paracrine effect of implanted cells on the remaining host retinal neurons.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Retina , Degeneração Retiniana/terapia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Fator A de Crescimento do Endotélio Vascular
12.
EBioMedicine ; 52: 102618, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31982829

RESUMO

BACKGROUND: The retinal pigment epithelium (RPE) has the potential to regenerate the entire neuroretina upon retinal injury in amphibians. In contrast, this regenerative capacity has been lost in mammals. The reprogramming of differentiated somatic cells into induced pluripotent stem cells (iPSCs) by viral transduction of exogenous stem cell factors has triggered a revolution in regenerative medicine. However, the risks of potential mutation(s) caused by random viral vector insertion in host genomes and tumor formation in recipients hamper its clinical application. One alternative is to immortalize adult stem cells with limited potential or to partially reprogram differentiated somatic cells into progenitor-like cells through non-integration protocols. METHODS: Sphere-induced RPE stem cells (iRPESCs) were generated from adult mouse RPE cells. Their stem cell functionality was studied in a mouse model of retinal degeneration. The molecular mechanism underlying the sphere-induced reprogramming was investigated using microarray and loss-of-function approaches. FINDINGS: We provide evidence that our sphere-induced reprogramming protocol can immortalize and transform mouse RPE cells into iRPESCs with dual potential to differentiate into cells that express either RPE or photoreceptor markers both in vitro and in vivo. When subretinally transplanted into mice with retinal degeneration, iRPESCs can integrate to the RPE and neuroretina, thereby delaying retinal degeneration in the model animals. Our molecular analyses indicate that the Hippo signaling pathway is important in iRPESC reprogramming. INTERPRETATION: The Hippo factor Yap1 is activated in the nuclei of cells at the borders of spheres. The factors Zeb1 and P300 downstream of the Hippo pathway are shown to bind to the promoters of the stemness genes Oct4, Klf4 and Sox2, thereby likely transactivate them to reprogram RPE cells into iRPESCs. FUND: National Natural Science Foundation of China and the National Institute of Health USA.


Assuntos
Reprogramação Celular , Epitélio Pigmentado da Retina/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Biomarcadores , Desdiferenciação Celular/genética , Diferenciação Celular/genética , Movimento Celular , Separação Celular/métodos , Células Cultivadas , Senescência Celular/genética , Epigênese Genética , Imunofluorescência , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Transgênicos , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/metabolismo , Transdução de Sinais , Testes Visuais
13.
Gut ; 68(12): 2129-2141, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31366457

RESUMO

OBJECTIVE: Chronic inflammation is a risk factor in colorectal cancer (CRC) and reactive oxygen species (ROS) released by the inflamed stroma elicit DNA damage in epithelial cells. We sought to identify new drivers of ulcerative colitis (UC) and inflammatory CRC. DESIGN: The study uses samples from patients with UC, mouse models of colitis and CRC and mice deficient for the epithelial-to-mesenchymal transition factor ZEB1 and the DNA repair glycosylase N-methyl-purine glycosylase (MPG). Samples were analysed by immunostaining, qRT-PCR, chromatin immunoprecipitation assays, microbiota next-generation sequencing and ROS determination. RESULTS: ZEB1 was induced in the colonic epithelium of UC and of mouse models of colitis. Compared with wild-type counterparts, Zeb1-deficient mice were partially protected from experimental colitis and, in a model of inflammatory CRC, they developed fewer tumours and exhibited lower levels of DNA damage (8-oxo-dG) and higher expression of MPG. Knockdown of ZEB1 in CRC cells inhibited 8-oxo-dG induction by oxidative stress (H2O2) and inflammatory cytokines (interleukin (IL)1ß). ZEB1 bound directly to the MPG promoter whose expression inhibited. This molecular mechanism was validated at the genetic level and the crossing of Zeb1-deficient and Mpg-deficient mice reverted the reduced inflammation and tumourigenesis in the former. ZEB1 expression in CRC cells induced ROS and IL1ß production by macrophages that, in turn, lowered MPG in CRC cells thus amplifying a positive loop between both cells to promote DNA damage and inhibit DNA repair. CONCLUSIONS: ZEB1 promotes colitis and inflammatory CRC through the inhibition of MPG in epithelial cells, thus offering new therapeutic strategies to modulate inflammation and inflammatory cancer.


Assuntos
Colite Ulcerativa/genética , Neoplasias do Colo/genética , DNA Glicosilases/genética , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Experimentais , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Animais , Biópsia , Células Cultivadas , Colite Ulcerativa/complicações , Colite Ulcerativa/metabolismo , Neoplasias do Colo/etiologia , Neoplasias do Colo/patologia , DNA Glicosilases/metabolismo , Reparo do DNA , Células Epiteliais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Neoplásico/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Dedos de Zinco
14.
Cell Cycle ; 17(18): 2221-2229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30290712

RESUMO

Cancer stem cells (CSC) are thought to be an important source of cancer cells in tumors of different origins. Mounting evidence suggests they are generated reversibly from existing cancer cells, and supply new cancer cells during tumor progression and following therapy. Elegant lineage mapping stud(ies are identifying progenitors, and in some cases differentiated cells, as targets of transformation in a variety of tumors. Recent evidence suggests resulting tumor initiating cells (TIC) might be distinct from CSC. Molecular pathways leading from cells of tumor origin to precancerous lesions and cancer cells are only beginning to be unraveled. We review a pathway where asymmetric division of precancerous cells generates TIC in a K-Ras-initiated model of lung cancer. And, we compare unexpected steps in this asymmetric division to those evident in well-studied stem cell models.


Assuntos
Cromátides/metabolismo , Epigenômica , Divisão Celular , Citocinese , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Proteínas ras/metabolismo
15.
Nat Commun ; 9(1): 2424, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930325

RESUMO

A model of K-Ras-initiated lung cancer was used to follow the transition of precancerous adenoma to adenocarcinoma. In hypoxic, Tgf-ß1-rich interiors of adenomas, we show that adenoma cells divide asymmetrically to produce cancer-generating cells highlighted by epithelial mesenchymal transition and a CD44/Zeb1 loop. In these cells, Zeb1 represses the Smad inhibitor Zeb2/Sip1, causing Pten loss and launching Tgf-ß1 signaling that drives nuclear translocation of Yap1. Surprisingly, the nuclear polarization of transcription factors during mitosis establishes parent and daughter fates prior to cytokinesis in sequential asymmetric divisions that generate cancer cells from precancerous lesions. Mutation or knockdown of Zeb1 in the lung blocked the production of CD44hi, Zeb1hi cancer-generating cells from adenoma cells. A CD44/Zeb1 loop then initiates two-step transition of precancerous cells to cancer cells via a stable intermediate population of cancer-generating cells. We show these initial cancer-generating cells are independent of cancer stem cells generated in tumors by p53-regulated reprogramming of existing cancer cells.


Assuntos
Adenocarcinoma/patologia , Adenoma/patologia , Divisão Celular Assimétrica , Neoplasias Pulmonares/patologia , Fatores de Transcrição/análise , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/metabolismo , Adenoma/metabolismo , Animais , Proteínas de Ciclo Celular , Polaridade Celular , Transição Epitelial-Mesenquimal , Técnicas de Silenciamento de Genes , Genes ras , Humanos , Receptores de Hialuronatos/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Sinalização YAP , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
16.
EMBO J ; 36(22): 3336-3355, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29038174

RESUMO

Accumulation of tumor-associated macrophages (TAMs) associates with malignant progression in cancer. However, the mechanisms that drive the pro-tumor functions of TAMs are not fully understood. ZEB1 is best known for driving an epithelial-to-mesenchymal transition (EMT) in cancer cells to promote tumor progression. However, a role for ZEB1 in macrophages and TAMs has not been studied. Here we describe that TAMs require ZEB1 for their tumor-promoting and chemotherapy resistance functions in a mouse model of ovarian cancer. Only TAMs that expressed full levels of Zeb1 accelerated tumor growth. Mechanistically, ZEB1 expression in TAMs induced their polarization toward an F4/80low pro-tumor phenotype, including direct activation of Ccr2 In turn, expression of ZEB1 by TAMs induced Ccl2, Cd74, and a mesenchymal/stem-like phenotype in cancer cells. In human ovarian carcinomas, TAM infiltration and CCR2 expression correlated with ZEB1 in tumor cells, where along with CCL2 and CD74 determined poorer prognosis. Importantly, ZEB1 in TAMs was a factor of poorer survival in human ovarian carcinomas. These data establish ZEB1 as a key factor in the tumor microenvironment and for maintaining TAMs' tumor-promoting functions.


Assuntos
Carcinogênese/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Quimiocina CCL2/farmacologia , Fatores Estimuladores de Colônias/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/patologia , Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fenótipo , Receptores CCR2/metabolismo , Análise de Sobrevida , Regulação para Cima/efeitos dos fármacos
17.
Sci Rep ; 7(1): 45, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28246385

RESUMO

Human uveal melanoma (UM) is a major ocular malignant tumor with high risk of metastasis and requires multiple oncogenic factors for progression. ZEB1 is a zinc finger E-box binding transcription factor known for participating epithelial-mesenchymal transition (EMT), a critical cellular event for metastasis of malignant tumors of epithelium origin. ZEB1 is also expressed in UM and high expression of ZEB1 correlates with UM advancement, but has little effect on cell morphology. We show that spindle UM cells can become epithelioid but not vice versa; and ZEB1 exerts its tumorigenic effects by promoting cell dedifferentiation, proliferation, invasiveness, and dissemination. We provide evidence that ZEB1 binds not only to repress critical genes involving in pigment synthesis, mitosis, adherent junctions, but also to transactivate genes involving in matrix degradation and cellular locomotion to propel UM progression towards metastasis. We conclude that ZEB1 is a major oncogenic factor required for UM progression and could be a potential therapeutic target for treating UM in the clinic.


Assuntos
Melanoma/genética , Melanoma/metabolismo , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Animais , Carcinogênese , Desdiferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/patologia , Camundongos Nus , Invasividade Neoplásica , Oncogenes , Neoplasias Uveais/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
18.
J Exp Med ; 214(1): 165-181, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27998927

RESUMO

Here, we show that the Wnt5a-haploinsufficient niche regenerates dysfunctional HSCs, which do not successfully engraft in secondary recipients. RNA sequencing of the regenerated donor Lin- SCA-1+ KIT+ (LSK) cells shows dysregulated expression of ZEB1-associated genes involved in the small GTPase-dependent actin polymerization pathway. Misexpression of DOCK2, WAVE2, and activation of CDC42 results in apolar F-actin localization, leading to defects in adhesion, migration and homing of HSCs regenerated in a Wnt5a-haploinsufficient microenvironment. Moreover, these cells show increased differentiation in vitro, with rapid loss of HSC-enriched LSK cells. Our study further shows that the Wnt5a-haploinsufficient environment similarly affects BCR-ABLp185 leukemia-initiating cells, which fail to generate leukemia in 42% of the studied recipients, or to transfer leukemia to secondary hosts. Thus, we show that WNT5A in the bone marrow niche is required to regenerate HSCs and leukemic cells with functional ability to rearrange the actin cytoskeleton and engraft successfully.


Assuntos
Citoesqueleto de Actina/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Proteína Wnt-5a/fisiologia , Animais , Proteínas de Fusão bcr-abl/fisiologia , Haploinsuficiência/fisiologia , Leucemia/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Regeneração , Proteína Wnt-5a/genética
20.
J Invest Dermatol ; 135(6): 1621-1628, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25668240

RESUMO

The homozygous repeated epilation (Er/Er) mouse mutant of the gene encoding 14-3-3σ displays an epidermal phenotype characterized by hyperproliferative keratinocytes and undifferentiated epidermis. Heterozygous Er/+ mice develop spontaneous skin tumors and are highly sensitive to tumor-promoting 7,12-dimethylbenzanthracene/12-O-tetradecanoyl-phorbol-13-acetate induction. The molecular mechanisms underlying 14-3-3σ regulation of epidermal proliferation, differentiation, and tumor formation have not been well elucidated. In this study, we found that Er/Er keratinocytes failed to sequester Yap1 in the cytoplasm, leading to its nuclear localization during epidermal development in vivo and under differentiation-inducing culture conditions in vitro. In addition, enhanced Yap1 nuclear localization was also evident in 7,12-dimethylbenzanthracene/12-O-tetradecanoyl-phorbol-13-acetate-induced tumors from Er/+ skin. Furthermore, short hairpin RNA (shRNA) knockdown of Yap1 expression in Er/Er keratinocytes inhibited their proliferation, suggesting that YAP1 functions as a downstream effector of 14-3-3σ controlling epidermal proliferation. We then demonstrated that keratinocytes express all seven 14-3-3 protein isoforms, some of which form heterodimers with 14-3-3σ, either full-length wild type (WT) or the mutant form found in Er/Er mice. However, Er 14-3-3σ does not interact with Yap1, as demonstrated by coimmunoprecipitation. We conclude that Er 14-3-3σ disrupts the interaction between 14-3-3 and Yap1, and thus fails to block Yap1 nuclear transcriptional function, causing continued progenitor expansion and inhibition of differentiation in the Er/Er epidermis.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Queratinócitos/metabolismo , Fosfoproteínas/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Transporte Ativo do Núcleo Celular , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Núcleo Celular/metabolismo , Proliferação de Células , Citoplasma/metabolismo , Epiderme/metabolismo , Regulação da Expressão Gênica , Heterozigoto , Homozigoto , Queratinócitos/citologia , Lentivirus/genética , Camundongos , Fenótipo , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Pele/metabolismo , Acetato de Tetradecanoilforbol , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA