Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3219, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591542

RESUMO

The receptor-linked protein tyrosine phosphatases (RPTPs) are key regulators of cell-cell communication through the control of cellular phosphotyrosine levels. Most human RPTPs possess an extracellular receptor domain and tandem intracellular phosphatase domains: comprising an active membrane proximal (D1) domain and an inactive distal (D2) pseudophosphatase domain. Here we demonstrate that PTPRU is unique amongst the RPTPs in possessing two pseudophosphatase domains. The PTPRU-D1 displays no detectable catalytic activity against a range of phosphorylated substrates and we show that this is due to multiple structural rearrangements that destabilise the active site pocket and block the catalytic cysteine. Upon oxidation, this cysteine forms an intramolecular disulphide bond with a vicinal "backdoor" cysteine, a process thought to reversibly inactivate related phosphatases. Importantly, despite the absence of catalytic activity, PTPRU binds substrates of related phosphatases strongly suggesting that this pseudophosphatase functions in tyrosine phosphorylation by competing with active phosphatases for the binding of substrates.


Assuntos
Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biocatálise , Linhagem Celular , Dissulfetos/metabolismo , Estabilidade Enzimática , Humanos , Modelos Moleculares , Oxirredução , Ligação Proteica , Domínios Proteicos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Especificidade por Substrato
2.
Elife ; 82019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30924770

RESUMO

Cell-cell communication in multicellular organisms depends on the dynamic and reversible phosphorylation of protein tyrosine residues. The receptor-linked protein tyrosine phosphatases (RPTPs) receive cues from the extracellular environment and are well placed to influence cell signaling. However, the direct events downstream of these receptors have been challenging to resolve. We report here that the homophilic receptor PTPRK is stabilized at cell-cell contacts in epithelial cells. By combining interaction studies, quantitative tyrosine phosphoproteomics, proximity labeling and dephosphorylation assays we identify high confidence PTPRK substrates. PTPRK directly and selectively dephosphorylates at least five substrates, including Afadin, PARD3 and δ-catenin family members, which are all important cell-cell adhesion regulators. In line with this, loss of PTPRK phosphatase activity leads to disrupted cell junctions and increased invasive characteristics. Thus, identifying PTPRK substrates provides insight into its downstream signaling and a potential molecular explanation for its proposed tumor suppressor function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cateninas/metabolismo , Adesão Celular , Proteínas de Ciclo Celular/metabolismo , Células Epiteliais/enzimologia , Proteínas dos Microfilamentos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Linhagem Celular , Células Epiteliais/fisiologia , Humanos , Fosforilação , delta Catenina
3.
Elife ; 72018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30484775

RESUMO

Tapasin and TAPBPR are known to perform peptide editing on major histocompatibility complex class I (MHC I) molecules; however, the precise molecular mechanism(s) involved in this process remain largely enigmatic. Here, using immunopeptidomics in combination with novel cell-based assays that assess TAPBPR-mediated peptide exchange, we reveal a critical role for the K22-D35 loop of TAPBPR in mediating peptide exchange on MHC I. We identify a specific leucine within this loop that enables TAPBPR to facilitate peptide dissociation from MHC I. Moreover, we delineate the molecular features of the MHC I F pocket required for TAPBPR to promote peptide dissociation in a loop-dependent manner. These data reveal that chaperone-mediated peptide editing on MHC I can occur by different mechanisms dependent on the C-terminal residue that the MHC I accommodates in its F pocket and provide novel insights that may inform the therapeutic potential of TAPBPR manipulation to increase tumour immunogenicity.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Imunoglobulinas/imunologia , Proteínas de Membrana/imunologia , Simulação de Acoplamento Molecular , Peptídeos/imunologia , Sequência de Aminoácidos , Apresentação de Antígeno/imunologia , Sítios de Ligação/genética , Antígenos HLA-A/química , Antígenos HLA-A/imunologia , Antígenos HLA-A/metabolismo , Células HeLa , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Leucina/química , Leucina/imunologia , Leucina/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mutação , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos
4.
Elife ; 62017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425917

RESUMO

Recently, we revealed that TAPBPR is a peptide exchange catalyst that is important for optimal peptide selection by MHC class I molecules. Here, we asked whether any other co-factors associate with TAPBPR, which would explain its effect on peptide selection. We identify an interaction between TAPBPR and UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1), a folding sensor in the calnexin/calreticulin quality control cycle that is known to regenerate the Glc1Man9GlcNAc2 moiety on glycoproteins. Our results suggest the formation of a multimeric complex, dependent on a conserved cysteine at position 94 in TAPBPR, in which TAPBPR promotes the association of UGT1 with peptide-receptive MHC class I molecules. We reveal that the interaction between TAPBPR and UGT1 facilities the reglucosylation of the glycan on MHC class I molecules, promoting their recognition by calreticulin. Our results suggest that in addition to being a peptide editor, TAPBPR improves peptide optimisation by promoting peptide-receptive MHC class I molecules to associate with the peptide-loading complex.


Assuntos
Apresentação de Antígeno , Glucosiltransferases/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Linhagem Celular , Humanos , Mapeamento de Interação de Proteínas , Multimerização Proteica
5.
Elife ; 42015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26439010

RESUMO

Our understanding of the antigen presentation pathway has recently been enhanced with the identification that the tapasin-related protein TAPBPR is a second major histocompatibility complex (MHC) class I-specific chaperone. We sought to determine whether, like tapasin, TAPBPR can also influence MHC class I peptide selection by functioning as a peptide exchange catalyst. We show that TAPBPR can catalyse the dissociation of peptides from peptide-MHC I complexes, enhance the loading of peptide-receptive MHC I molecules, and discriminate between peptides based on affinity in vitro. In cells, the depletion of TAPBPR increased the diversity of peptides presented on MHC I molecules, suggesting that TAPBPR is involved in restricting peptide presentation. Our results suggest TAPBPR binds to MHC I in a peptide-receptive state and, like tapasin, works to enhance peptide optimisation. It is now clear there are two MHC class I specific peptide editors, tapasin and TAPBPR, intimately involved in controlling peptide presentation to the immune system.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Antígenos/metabolismo , Linhagem Celular , Humanos , Peptídeos/metabolismo , Ligação Proteica
6.
Biochem Soc Trans ; 36(Pt 6): 1393-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19021562

RESUMO

LMO (LIM-only) and LIM-HD (LIM-homeodomain) proteins form a family of proteins that is required for myriad developmental processes and which can contribute to diseases such as T-cell leukaemia and breast cancer. The four LMO and 12 LIM-HD proteins in mammals are expressed in a combinatorial manner in many cell types, forming a transcriptional 'LIM code'. The proteins all contain a pair of closely spaced LIM domains near their N-termini that mediate protein-protein interactions, including binding to the approximately 30-residue LID (LIM interaction domain) of the essential co-factor protein Ldb1 (LIM domain-binding protein 1). In an attempt to understand the molecular mechanisms behind the LIM code, we have determined the molecular basis of binding of LMO and LIM-HD proteins for Ldb1(LID) through a series of structural, mutagenic and biophysical studies. These studies provide an explanation for why Ldb1 binds the LIM domains of the LMO/LIM-HD family, but not LIM domains from other proteins. The LMO/LIM-HD family exhibit a range of affinities for Ldb1, which influences the formation of specific functional complexes within cells. We have also identified an additional LIM interaction domain in one of the LIM-HD proteins, Isl1. Despite low sequence similarity to Ldb1(LID), this domain binds another LIM-HD protein, Lhx3, in an identical manner to Ldb1(LID). Through our and other studies, it is emerging that the multiple layers of competitive binding involving LMO and LIM-HD proteins and their partner proteins contribute significantly to cell fate specification and development.


Assuntos
Ligação Competitiva , Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Especificidade de Órgãos , Estrutura Terciária de Proteína
7.
EMBO J ; 23(18): 3589-98, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15343268

RESUMO

Nuclear LIM-only (LMO) and LIM-homeodomain (LIM-HD) proteins have important roles in cell fate determination, organ development and oncogenesis. These proteins contain tandemly arrayed LIM domains that bind the LIM interaction domain (LID) of the nuclear adaptor protein LIM domain-binding protein-1 (Ldb1). We have determined a high-resolution X-ray crystal structure of LMO4, a putative breast oncoprotein, in complex with Ldb1-LID, providing the first example of a tandem LIM:Ldb1-LID complex and the first structure of a type-B LIM domain. The complex possesses a highly modular structure with Ldb1-LID binding in an extended manner across both LIM domains of LMO4. The interface contains extensive hydrophobic and electrostatic interactions and multiple backbone-backbone hydrogen bonds. A mutagenic screen of Ldb1-LID, assessed by yeast two-hybrid and competition ELISA analysis, identified key features at the interface and revealed that the interaction is tolerant to mutation. These combined properties provide a mechanism for the binding of Ldb1 to numerous LMO and LIM-HD proteins. Furthermore, the modular extended interface may form a general mode of binding to tandem LIM domains.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Homeodomínio/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/química , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sinergismo Farmacológico , Fator Xa/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Domínio LIM , Espectroscopia de Ressonância Magnética , Camundongos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Sequências de Repetição em Tandem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
8.
EMBO J ; 22(9): 2224-33, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12727888

RESUMO

LMO2 and LMO4 are members of a small family of nuclear transcriptional regulators that are important for both normal development and disease processes. LMO2 is essential for hemopoiesis and angiogenesis, and inappropriate overexpression of this protein leads to T-cell leukemias. LMO4 is developmentally regulated in the mammary gland and has been implicated in breast oncogenesis. Both proteins comprise two tandemly repeated LIM domains. LMO2 and LMO4 interact with the ubiquitous nuclear adaptor protein ldb1/NLI/CLIM2, which associates with the LIM domains of LMO and LIM homeodomain proteins via its LIM interaction domain (ldb1-LID). We report the solution structures of two LMO:ldb1 complexes (PDB: 1M3V and 1J2O) and show that ldb1-LID binds to the N-terminal LIM domain (LIM1) of LMO2 and LMO4 in an extended conformation, contributing a third strand to a beta-hairpin in LIM1 domains. These findings constitute the first molecular definition of LIM-mediated protein-protein interactions and suggest a mechanism by which ldb1 can bind a variety of LIM domains that share low sequence homology.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Metaloproteínas/metabolismo , Proteínas Repressoras , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Dicroísmo Circular , Proteína 1 Inibidora de Diferenciação , Proteínas com Domínio LIM , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA