Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 355: 225-237, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28499968

RESUMO

The olivary pretectal nucleus (OPT) is a midbrain structure that receives reciprocal bilateral retinal projections, is involved in the pupillary light reflex, and connects reciprocally with the intergeniculate leaflet (IGL), a retinorecipient brain region that mediates behavioral responses to light pulses (i.e., masking) in diurnal Nile grass rats. Here, we lesioned the OPT and evaluated behavioral responses in grass rats to various lighting conditions, as well as their anxiety-like responses to light exposure. While control grass rats remained diurnal, grass rats with OPT lesions exhibited a more night-active pattern under 12h:12h light-dark (LD) conditions. However, when placed in constant darkness, OPT-lesioned grass rats became more active during their subjective day, suggesting that an exaggerated masking response to light may be responsible for the effect of OPT lesions on locomotor activity in LD. To test this hypothesis, we presented dark and light pulses to controls and grass rats with OPT lesions; controls increased their activity in response to light, whereas those with OPT lesions significantly increased activity in response to darkness. Further, when placed in a 7-h ultradian LD cycle, animals with OPT lesions were more active during darkness than controls. OPT lesions also abolished the pupillary light reflex, but did not affect anxiety-like behaviors. Finally, in animals with OPT lesions, light did not induce Fos expression in the ventrolateral geniculate nucleus, as it did in controls. Altogether, these results suggest that masking responses to light and darkness are dependent upon nuclei within the subcortical visual shell in grass rats.


Assuntos
Adaptação Ocular/fisiologia , Ritmo Circadiano/fisiologia , Comportamento Exploratório/fisiologia , Área Pré-Tectal/fisiologia , Pupila/fisiologia , Reflexo/fisiologia , Análise de Variância , Animais , Ansiedade/fisiopatologia , Escuridão , Modelos Animais de Doenças , Feminino , Luz , Proteínas Oncogênicas v-fos/metabolismo , Mascaramento Perceptivo/fisiologia , Estimulação Luminosa , Ratos
2.
Behav Brain Res ; 300: 77-84, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26684510

RESUMO

The impact of ambient light on mood and anxiety is best exemplified in seasonal affective disorder, in which patients experience depression and anxiety in winter when there is less light in the environment. However, the brain mechanisms underlying light-dependent changes in affective state remain unclear. Our previous work revealed increased depression-like behaviors in the diurnal Nile grass rat (Arvicanthis niloticus) housed in a dim light-dark (dim-LD) cycle as compared to the controls housed in a bright light-dark (bright-LD) condition. As depression is often comorbid with anxiety and is associated with dysregulation of the body's stress response system, the present study examined the anxiety-like behaviors as well as indicators of the hypothalamic-pituitary-adrenal (HPA) axis functioning in the grass rats. Animals housed in dim-LD showed increased anxiety-like behaviors compared to bright-LD controls, as revealed by fewer entries and less time spent at the center in the open field test and more marbles buried during the marble-burying test. Following the marble-burying test, dim-LD animals showed higher plasma corticosterone (CORT) levels and hippocampal Fos expression. Although the daily CORT rhythm was comparable between bright-LD and dim-LD groups, the day/night variation of corticotropin-releasing hormone mRNA expression in the paraventricular nucleus was diminished in dim-LD animals. In addition, glucocorticoid receptor and mineralocorticoid receptor mRNA expression were higher in the hippocampus of dim-LD animals. The results suggest that in diurnal species, reduced daytime illumination can lead to increased anxiety-like behaviors and altered HPA axis functioning, providing insights into the link between decreased environmental illumination and negative emotion.


Assuntos
Transtornos de Ansiedade/fisiopatologia , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Luz , Sistema Hipófise-Suprarrenal/metabolismo , Animais , Transtornos de Ansiedade/etiologia , Ritmo Circadiano/fisiologia , Corticosterona/sangue , Hormônio Liberador da Corticotropina/metabolismo , Modelos Animais de Doenças , Abrigo para Animais , Iluminação , Masculino , Atividade Motora/fisiologia , Murinae , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo
3.
Neurosci Lett ; 602: 17-21, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26116821

RESUMO

Light has profound effects on mood regulation as exemplified in seasonal affective disorder (SAD) and the therapeutic benefits of light therapy. However, the underlying neural pathways through which light regulates mood are not well understood. Our previous work has developed the diurnal grass rat, Arvicanthis niloticus, as an animal model of SAD. Following housing conditions of either 12:12 h dim light:dark (DLD) or 8:16 h short photoperiod (SP), which mimic the lower light intensity or short day-length of winter, respectively, grass rats exhibit an increase in depression-like behavior compared to those housed in a 12:12 h bright light:dark (BLD) condition. Furthermore, we have shown that the orexinergic system is involved in mediating the effects of light on mood and anxiety. To explore other potential neural substrates involved in the depressive phenotype, the present study examined hypothalamic dopaminergic (DA) and somatostatin (SST) neurons in the brains of grass rats housed in DLD, SP and BLD. Using immunostaining for tyrosine hydroxylase (TH) and SST, we found that the number of TH- and SST-ir cells in the hypothalamus was significantly lower in the DLD and SP groups compared to the BLD group. We also found that treating BLD animals with a selective orexin receptor 1 (OX1R) antagonist SB-334867 significantly reduced the number of hypothalamic TH-ir cells. The present study suggests that the hypothalamic DA neurons are sensitive to daytime light deficiency and are regulated by an orexinergic pathway. The results support the hypothesis that the orexinergic pathways mediate the effects of light on other neuronal systems that collectively contribute to light-dependent changes in the affective state.


Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Transtorno Afetivo Sazonal/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Hipotálamo/patologia , Luz , Masculino , Murinae , Antagonistas dos Receptores de Orexina , Receptores de Orexina/metabolismo , Fotoperíodo , Transtorno Afetivo Sazonal/patologia , Transdução de Sinais , Somatostatina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA