Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Gen Genet ; 263(6): 948-56, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10954080

RESUMO

Ectomycorrhizal fungi contribute to the nitrogen nutrition of their host plants, but no information is available on the molecular control of their nitrogen metabolism. The cloning and pattern of transcriptional regulation of two nitrite reductase genes of the symbiotic basidiomycete Hebeloma cylindrosporum are presented. The genomic copy of one of these genes (nar1) was entirely sequenced; the coding region is interrupted by 12 introns. The nar1 gene, which is transcribed and codes for a putative 908-amino acid polypeptide complemented nitrate reductase-deficient mutants of H. cylindrosporum upon transformation, thus demonstrating that the gene is functional. The second gene (nar2), for which no mRNA transcripts were detected, is considered to be an ancestral, non-functional duplication of nar1. In a 462-nt partial sequence of nar2 two introns were identified at positions identical to those of introns 8 and 9 of nar1, although their respective nucleotide sequences were highly divergent; the exon sequences were much more conserved. In wild-type strains, transcription of nar1 is repressed in the presence of a high concentration of ammonium. High levels of transcription are observed in the presence of either very low nitrogen concentrations or high concentrations of nitrate or organic N sources such as urea, glycine or serine. This indicates that in H. cylindrosporum, in contrast to all nitrophilous organisms studied so far, an exogenous supply of nitrate is not required to induce transcription of a nitrate reductase gene. In contrast, repression by ammonium suggests the existence of a wide-domain regulatory gene, as already characterized in ascomycete species.


Assuntos
Agaricales/genética , Genes Fúngicos , Nitrato Redutases/genética , Simbiose , Agaricales/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Dados de Sequência Molecular , Nitrato Redutase , Nitrato Redutases/biossíntese , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA