Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0072223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754761

RESUMO

IMPORTANCE: Chronic hepatitis B is the most important cause of liver cancer worldwide and affects more than 290 million people. Current treatments are mostly suppressive and rarely lead to a cure. Therefore, there is a need for novel and curative drugs that target the host or the causative agent, hepatitis B virus itself. Capsid assembly modulators are an interesting class of antiviral molecules that may one day become part of curative treatment regimens for chronic hepatitis B. Here we explore the characteristics of a particularly interesting subclass of capsid assembly modulators. These so-called non-HAP CAM-As have intriguing properties in cell culture but also clear virus-infected cells from the mouse liver in a gradual and sustained way. We believe they represent a considerable improvement over previously reported molecules and may one day be part of curative treatment combinations for chronic hepatitis B.


Assuntos
Antivirais , Capsídeo , Vírus da Hepatite B , Hepatite B Crônica , Montagem de Vírus , Animais , Humanos , Camundongos , Antivirais/classificação , Antivirais/farmacologia , Antivirais/uso terapêutico , Capsídeo/química , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Vírus da Hepatite B/química , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Técnicas In Vitro , Montagem de Vírus/efeitos dos fármacos , Modelos Animais de Doenças
2.
Hepatology ; 78(4): 1252-1265, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102495

RESUMO

BACKGROUND AND AIMS: Effective therapies leading to a functional cure for chronic hepatitis B are still lacking. Class A capsid assembly modulators (CAM-As) are an attractive modality to address this unmet medical need. CAM-As induce aggregation of the HBV core protein (HBc) and lead to sustained HBsAg reductions in a chronic hepatitis B mouse model. Here, we investigate the underlying mechanism of action for CAM-A compound RG7907. APPROACH AND RESULTS: RG7907 induced extensive HBc aggregation in vitro , in hepatoma cells, and in primary hepatocytes. In the adeno-associated virus (AAV)-HBV mouse model, the RG7907 treatment led to a pronounced reduction in serum HBsAg and HBeAg, concomitant with clearance of HBsAg, HBc, and AAV-HBV episome from the liver. Transient increases in alanine transaminase, hepatocyte apoptosis, and proliferation markers were observed. These processes were confirmed by RNA sequencing, which also uncovered a role for interferon alpha and gamma signaling, including the interferon-stimulated gene 15 (ISG15) pathway. Finally, the in vitro observation of CAM-A-induced HBc-dependent cell death through apoptosis established the link of HBc aggregation to in vivo loss of infected hepatocytes. CONCLUSIONS: Our study unravels a previously unknown mechanism of action for CAM-As such as RG7907 in which HBc aggregation induces cell death, resulting in hepatocyte proliferation and loss of covalently closed circular DNA or its equivalent, possibly assisted by an induced innate immune response. This represents a promising approach to attain a functional cure for chronic hepatitis B.


Assuntos
Hepatite B Crônica , Hepatite B , Camundongos , Animais , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B/metabolismo , Capsídeo/metabolismo , Hepatócitos/metabolismo , Interferon-alfa/farmacologia , Hepatite B/metabolismo , DNA Viral/genética
3.
Hepatol Commun ; 2(2): 173-187, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29404525

RESUMO

Hepatitis E virus (HEV) is a member of the genus Orthohepevirus in the family Hepeviridae and the causative agent of hepatitis E in humans. HEV is a major health problem in developing countries, causing mortality rates up to 25% in pregnant women. However, these cases are mainly reported for HEV genotype (gt)1, while gt3 infections are usually associated with subclinical courses of disease. The pathogenic mechanisms of adverse maternal and fetal outcome during pregnancy in HEV-infected pregnant women remain elusive. In this study, we observed that HEV is capable of completing the full viral life cycle in placental-derived cells (JEG-3). Following transfection of JEG-3 cells, HEV replication of both HEV gts could be observed. Furthermore, determination of extracellular and intracellular viral capsid levels, infectivity, and biophysical properties revealed production of HEV infectious particles with similar characteristics as in liver-derived cells. Viral entry was analyzed by infection of target cells and detection of either viral RNA or staining for viral capsid protein by immunofluorescence. HEV gt1 and gt3 were efficiently inhibited by ribavirin in placental as well as in human hepatoma cells. In contrast, interferon-α sensitivity was lower in the placental cells compared to liver cells for gt1 but not gt3 HEV. Simultaneous determination of interferon-stimulated gene expression levels demonstrated an efficient HEV-dependent restriction in JEG-3. Conclusion: We showed differential tissue-specific host responses to HEV genotypes, adding to our understanding of the mechanisms contributing to fatal outcomes of HEV infections during pregnancy. Using this cell-culture system, new therapeutic options for HEV during pregnancy can be identified and evaluated. (Hepatology Communications 2018;2:173-187).

4.
Eur J Heart Fail ; 18(12): 1430-1441, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27748022

RESUMO

Over the last decade, parvovirus B19 (B19V) has frequently been linked to the pathogenesis of myocarditis (MC) and its progression towards dilated cardiomyopathy (DCM). The exact role of the presence of B19V and its load remains controversial, as this virus is also found in the heart of healthy subjects. Moreover, the prognostic relevance of B19V prevalence in endomyocardial biopsies still remains unclear. As a result, it is unclear whether the presence of B19V should be treated. This review provides an overview of recent literature investigating the presence of B19V and its pathophysiological relevance in MC and DCM, as well as in normal hearts. In brief, no difference in B19V prevalence is observed between MC/DCM and healthy control hearts. Therefore, the question remains open whether and how cardiac B19V may be of pathogenetic importance. Findings suggest that B19V is aetiologically relevant either in the presence of other cardiotropic viruses, or when B19V load is high and/or actively replicating, which both may maintain myocardial (low-grade) inflammation. Therefore, future studies should focus on the prognostic relevance of the viral load, replicative status and virus co-infections. In addition, the immunogenetic background of MC/DCM patients that makes them susceptible to develop heart failure upon presence of B19V should be more thoroughly investigated.


Assuntos
Cardiomiopatia Dilatada/epidemiologia , Coração/virologia , Miocardite/epidemiologia , Infecções por Parvoviridae/epidemiologia , Parvovirus B19 Humano , Biópsia , Cardiomiopatia Dilatada/virologia , Humanos , Miocardite/virologia , Miocárdio/patologia , Prevalência
5.
Dis Model Mech ; 9(10): 1203-1210, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27483350

RESUMO

Hepatitis E virus (HEV) is one of the prime causes of acute viral hepatitis, and chronic hepatitis E is increasingly recognized as an important problem in the transplant setting. Nevertheless, the fundamental understanding of the biology of HEV replication is limited and there are few therapeutic options. The development of such therapies is partially hindered by the lack of a robust and convenient animal model. We propose the infection of athymic nude rats with the rat HEV strain LA-B350 as such a model. A cDNA clone, pLA-B350, was constructed and the infectivity of its capped RNA transcripts was confirmed in vitro and in vivo Furthermore, a subgenomic replicon, pLA-B350/luc, was constructed and validated for in vitro antiviral studies. Interestingly, rat HEV proved to be less sensitive to the antiviral activity of α-interferon, ribavirin and mycophenolic acid than genotype 3 HEV (a strain that infects humans). As a proof-of-concept, part of the C-terminal polymerase sequence of pLA-B350/luc was swapped with its genotype 3 HEV counterpart: the resulting chimeric replicon replicated with comparable efficiency as the wild-type construct, confirming that LA-B350 strain is amenable to humanization (replacement of certain sequences or motifs by their counterparts from human HEV strains). Finally, ribavirin effectively inhibited LA-B350 replication in athymic nude rats, confirming the suitability of the rat model for antiviral studies.


Assuntos
Vírus da Hepatite E/fisiologia , Hepatite E/virologia , Animais , Antivirais/farmacologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Células Clonais , DNA Complementar/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Hepatite E/patologia , Vírus da Hepatite E/efeitos dos fármacos , Humanos , Fígado/patologia , Fígado/virologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/administração & dosagem , RNA Polimerase Dependente de RNA/metabolismo , Ratos Nus , Replicon/genética , Replicação Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
6.
J Virol ; 90(19): 8478-86, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440879

RESUMO

UNLABELLED: ADP-ribosylation is a posttranslational protein modification in which ADP-ribose is transferred from NAD(+) to specific acceptors to regulate a wide variety of cellular processes. The macro domain is an ancient and highly evolutionarily conserved protein domain widely distributed throughout all kingdoms of life, including viruses. The human TARG1/C6orf130, MacroD1, and MacroD2 proteins can reverse ADP-ribosylation by acting on ADP-ribosylated substrates through the hydrolytic activity of their macro domains. Here, we report that the macro domain from hepatitis E virus (HEV) serves as an ADP-ribose-protein hydrolase for mono-ADP-ribose (MAR) and poly(ADP-ribose) (PAR) chain removal (de-MARylation and de-PARylation, respectively) from mono- and poly(ADP)-ribosylated proteins, respectively. The presence of the HEV helicase in cis dramatically increases the binding of the macro domain to poly(ADP-ribose) and stimulates the de-PARylation activity. Abrogation of the latter dramatically decreases replication of an HEV subgenomic replicon. The de-MARylation activity is present in all three pathogenic positive-sense, single-stranded RNA [(+)ssRNA] virus families which carry a macro domain: Coronaviridae (severe acute respiratory syndrome coronavirus and human coronavirus 229E), Togaviridae (Venezuelan equine encephalitis virus), and Hepeviridae (HEV), indicating that it might be a significant tropism and/or pathogenic determinant. IMPORTANCE: Protein ADP-ribosylation is a covalent posttranslational modification regulating cellular protein activities in a dynamic fashion to modulate and coordinate a variety of cellular processes. Three viral families, Coronaviridae, Togaviridae, and Hepeviridae, possess macro domains embedded in their polyproteins. Here, we show that viral macro domains reverse cellular ADP-ribosylation, potentially cutting the signal of a viral infection in the cell. Various poly(ADP-ribose) polymerases which are notorious guardians of cellular integrity are demodified by macro domains from members of these virus families. In the case of hepatitis E virus, the adjacent viral helicase domain dramatically increases the binding of the macro domain to PAR and simulates the demodification activity.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Vírus da Hepatite E/fisiologia , Poliproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Humanos , Hidrólise
7.
J Hepatol ; 65(1): 200-212, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26966047

RESUMO

Hepatitis E virus (HEV) is a positive-strand RNA virus transmitted by the fecal-oral route. The 7.2kb genome encodes three open reading frames (ORF) which are translated into (i) the ORF1 polyprotein, representing the viral replicase, (ii) the ORF2 protein, corresponding to the viral capsid, and (iii) the ORF3 protein, a small protein involved in particle secretion. Although HEV is a non-enveloped virus in bile and feces, it circulates in the bloodstream wrapped in cellular membranes. HEV genotypes 1 and 2 infect only humans and cause mainly waterborne outbreaks. HEV genotypes 3 and 4 are widely represented in the animal kingdom and are transmitted as a zoonosis mainly via contaminated meat. HEV infection is usually self-limited but may persist and cause chronic hepatitis in immunocompromised patients. Reduction of immunosuppressive treatment or antiviral therapy with ribavirin have proven effective in most patients with chronic hepatitis E but therapy failures have been reported. Alternative treatment options are needed, therefore. Infection with HEV may also cause a number of extrahepatic manifestations, especially neurologic complications. Progress in the understanding of the biology of HEV should contribute to improved control and treatment of HEV infection.


Assuntos
Hepatite E , Animais , Fezes , Vírus da Hepatite E , Humanos , Fases de Leitura Aberta , Ribavirina
8.
J Hepatol ; 64(3): 565-73, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26626494

RESUMO

BACKGROUND & AIMS: Yearly, approximately 20million people become infected with the hepatitis E virus (HEV) resulting in over 3million cases of acute hepatitis. Although HEV-mediated hepatitis is usually self-limiting, severe cases of fulminant hepatitis as well as chronic infections have been reported, resulting annually in an estimated 60,000 deaths. We studied whether pluripotent stem cell (PSC)-derived hepatocytes, mesodermal and/or neuroprogenitor cells support HEV replication. METHODS: Human PSC were differentiated towards hepatocyte-like cells, mesodermal cells and neuroprogenitors and subsequently infected with HEV. Infection and replication of HEV was analyzed by qRT-PCR, RNA in situ hybridization, negative strand RT-PCR, production of infectious virions and transfection with a transient HEV reporter replicon. RESULTS: PSC-derived hepatocytes supported the complete replication cycle of HEV, as demonstrated by the intracellular presence of positive and negative strand HEV RNA and the production of infectious virions. The replication of the virus in these cells was inhibited by the antiviral drugs ribavirin and interferon-α2b. In contrast to PSC-derived hepatocytes, PSC-derived mesodermal cells and neuroprogenitors only supported HEV replication upon transfection with a HEV subgenomic replicon. CONCLUSION: We demonstrate that PSC can be used to study the hepatotropism of HEV infection. The complete replication cycle of HEV can be recapitulated in infected PSC-derived hepatocytes. By contrast other germ layer cells support intracellular replication but are not infectable with HEV. Thus the early steps in the viral cycle are the main determinant governing HEV tissue tropism. PSC-hepatocytes offer a physiological relevant tool to study the biology of HEV infection and replication and may aid in the design of therapeutic strategies.


Assuntos
Vírus da Hepatite E/fisiologia , Hepatócitos/virologia , Células-Tronco Pluripotentes/citologia , Replicação Viral , Células Hep G2 , Humanos , RNA Viral/análise , Internalização do Vírus
9.
Gastroenterology ; 147(5): 1008-11.e7; quiz e15-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25181691

RESUMO

We analyzed blood samples collected from 15 patients with chronic hepatitis E who were recipients of solid-organ transplants. All patients cleared the hepatitis E virus (HEV) except for 2 (nonresponders); 1 patient died. A G1634R mutation in viral polymerase was detected in the HEV RNA of the nonresponders; this mutation did not provide the virus with resistance to ribavirin in vitro. However, the mutant form of a subgenomic replicon of genotype 3 HEV replicated more efficiently in vitro than HEV without this mutation, and the same was true for infectious virus, including in competition assays. Similar results were obtained for genotype 1 HEV. The G1634R mutation therefore appears to increase the replicative capacity of HEV in the human liver and hence reduce the efficacy of ribavirin.


Assuntos
Antivirais/uso terapêutico , RNA Polimerases Dirigidas por DNA/genética , Vírus da Hepatite E/efeitos dos fármacos , Hepatite E/tratamento farmacológico , Hepatite Crônica/tratamento farmacológico , Mutação , Transplante de Órgãos/efeitos adversos , Ribavirina/uso terapêutico , Replicação Viral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Viral/genética , Feminino , Genótipo , Células Hep G2 , Hepatite E/diagnóstico , Hepatite E/mortalidade , Hepatite E/virologia , Vírus da Hepatite E/enzimologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/crescimento & desenvolvimento , Hepatite Crônica/diagnóstico , Hepatite Crônica/mortalidade , Hepatite Crônica/virologia , Humanos , Masculino , Mutagênese Sítio-Dirigida , Fenótipo , Fatores de Tempo , Transfecção , Falha de Tratamento , Replicação Viral/genética
10.
Gastroenterology ; 146(7): 1775-83, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24582714

RESUMO

BACKGROUND & AIMS: Many recipients of organ transplants develop chronic hepatitis, due to infection with the hepatitis E virus (HEV). Although chronic HEV infection is generally associated with immunosuppressive therapies, little is known about how different immunosuppressants affect HEV infection. METHODS: A subgenomic HEV replication model, in which expression of a luciferase reporter gene is measured, and a full-length infection model were used. We studied the effects of different immunosuppressants, including steroids, calcineurin inhibitors (tacrolimus [FK506] and cyclosporin A), and mycophenolic acid (MPA, an inhibitor of inosine monophosphate dehydrogenase) on HEV replication in human hepatoma cell line Huh7. Expression of cyclophilins A and B (the targets of cyclosporin A) were knocked down using small hairpin RNAs. RESULTS: Steroids had no significant effect on HEV replication. Cyclosporin A promoted replication of HEV in the subgenomic and infectious models. Knockdown of cyclophilin A and B increased levels of HEV genomic RNA by 4.0- ± 0.6-fold and 7.2- ± 1.9-fold, respectively (n = 6; P < .05). A high dose of FK506 promoted infection of liver cells with HEV. In contrast, MPA inhibited HEV replication. Incubation of cells with guanosine blocked the antiviral activity of MPA, indicating that the antiviral effects of this drug involve nucleotide depletion. The combination of MPA and ribavirin had a greater ability to inhibit HEV replication than MPA or ribavirin alone. CONCLUSIONS: Cyclophilins A and B inhibit replication of HEV; this might explain the ability of cyclosporin A to promote HEV infection. On the other hand, the immunosuppressant MPA inhibits HEV replication. These findings should be considered when physicians select immunosuppressive therapies for recipients of organ transplants who are infected with HEV.


Assuntos
Antivirais/farmacologia , Inibidores de Calcineurina , Ciclosporina/farmacologia , Vírus da Hepatite E/efeitos dos fármacos , Hepatite E/virologia , Hepatite Crônica/virologia , Imunossupressores/farmacologia , Ácido Micofenólico/farmacologia , Replicação Viral/efeitos dos fármacos , Calcineurina/metabolismo , Linhagem Celular Tumoral , Ciclofilina A/genética , Ciclofilina A/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Hepatite E/tratamento farmacológico , Hepatite E/genética , Hepatite E/metabolismo , Vírus da Hepatite E/genética , Vírus da Hepatite E/crescimento & desenvolvimento , Hepatite Crônica/tratamento farmacológico , Hepatite Crônica/genética , Hepatite Crônica/metabolismo , Humanos , Interferência de RNA , RNA Viral/biossíntese , Ribavirina/farmacologia , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA