Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695342

RESUMO

BACKGROUND: Glioblastoma is a highly aggressive type of brain tumour for which there is no curative treatment available. Immunotherapies have shown limited responses in unselected patients, and there is an urgent need to identify mechanisms of treatment resistance to design novel therapy strategies. METHODS: Here we investigated the phenotypic and transcriptional dynamics at single-cell resolution during nivolumab immune checkpoint treatment of glioblastoma patients. RESULTS: We present the integrative paired single-cell RNA-seq analysis of 76 tumour samples from patients in a clinical trial of the PD-1 inhibitor nivolumab and untreated patients. We identify a distinct aggressive phenotypic signature in both tumour cells and the tumour microenvironment in response to nivolumab. Moreover, nivolumab-treatment was associated with an increased transition to mesenchymal stem-like tumour cells, and an increase in TAMs and exhausted and proliferative T cells. We verify and extend our findings in large external glioblastoma dataset (n = 298), develop a latent immune signature and find 18% of primary glioblastoma samples to be latent immune, associated with mesenchymal tumour cell state and TME immune response. Finally, we show that latent immune glioblastoma patients are associated with shorter overall survival following immune checkpoint treatment (p = 0.0041). CONCLUSIONS: We find a resistance mechanism signature in a quarter of glioblastoma patients associated with a tumour-cell transition to a more aggressive mesenchymal-like state, increase in TAMs and proliferative and exhausted T cells in response to immunotherapy. These patients may instead benefit from neuro-oncology therapies targeting mesenchymal tumour cells.

2.
Nat Commun ; 12(1): 5826, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611171

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer mortality by 2030. Bulk transcriptomic analyses have distinguished 'classical' from 'basal-like' tumors with more aggressive clinical behavior. We derive PDAC organoids from 18 primary tumors and two matched liver metastases, and show that 'classical' and 'basal-like' cells coexist in individual organoids. By single-cell transcriptome analysis of PDAC organoids and primary PDAC, we identify distinct tumor cell states shared across patients, including a cycling progenitor cell state and a differentiated secretory state. Cell states are connected by a differentiation hierarchy, with 'classical' cells concentrated at the endpoint. In an imaging-based drug screen, expression of 'classical' subtype genes correlates with better drug response. Our results thus uncover a functional hierarchy of PDAC cell states linked to transcriptional tumor subtypes, and support the use of PDAC organoids as a clinically relevant model for in vitro studies of tumor heterogeneity.


Assuntos
Organoides/metabolismo , Análise de Célula Única/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos
3.
Gastroenterology ; 160(4): 1330-1344.e11, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33212097

RESUMO

BACKGROUND & AIMS: Molecular evidence of cellular heterogeneity in the human exocrine pancreas has not been yet established because of the local concentration and cascade of hydrolytic enzymes that can rapidly degrade cells and RNA upon pancreatic resection. We sought to better understand the heterogeneity and cellular composition of the pancreas in neonates and adults in healthy and diseased conditions using single-cell sequencing approaches. METHODS: We innovated single-nucleus RNA-sequencing protocols and profiled more than 120,000 cells from pancreata of adult and neonatal human donors. We validated the single-nucleus findings using RNA fluorescence in situ hybridization, in situ sequencing, and computational approaches. RESULTS: We created the first comprehensive atlas of human pancreas cells including epithelial and nonepithelial constituents, and uncovered 3 distinct acinar cell types, with possible implications for homeostatic and inflammatory processes of the pancreas. The comparison with neonatal single-nucleus sequencing data showed a different cellular composition of the endocrine tissue, highlighting the tissue dynamics occurring during development. By applying spatial cartography, involving cell proximity mapping through in situ sequencing, we found evidence of specific cell type neighborhoods, dynamic topographies in the endocrine and exocrine pancreas, and principles of morphologic organization of the organ. Furthermore, similar analyses in chronic pancreatitis biopsy samples showed the presence of acinar-REG+ cells, a reciprocal association between macrophages and activated stellate cells, and a new potential role of tuft cells in this disease. CONCLUSIONS: Our human pancreas cell atlas can be interrogated to understand pancreatic cell biology and provides a crucial reference set for comparisons with diseased tissue samples to map the cellular foundations of pancreatic diseases.


Assuntos
Núcleo Celular/metabolismo , Pâncreas Exócrino/citologia , Adolescente , Adulto , Fatores Etários , Idoso , Animais , Fracionamento Celular , Criança , Pré-Escolar , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Animais , Pâncreas Exócrino/crescimento & desenvolvimento , Pâncreas Exócrino/metabolismo , RNA-Seq , Análise de Célula Única/métodos , Suínos , Adulto Jovem
4.
Nat Biotechnol ; 38(8): 970-979, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32591762

RESUMO

To investigate the immune response and mechanisms associated with severe coronavirus disease 2019 (COVID-19), we performed single-cell RNA sequencing on nasopharyngeal and bronchial samples from 19 clinically well-characterized patients with moderate or critical disease and from five healthy controls. We identified airway epithelial cell types and states vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In patients with COVID-19, epithelial cells showed an average three-fold increase in expression of the SARS-CoV-2 entry receptor ACE2, which correlated with interferon signals by immune cells. Compared to moderate cases, critical cases exhibited stronger interactions between epithelial and immune cells, as indicated by ligand-receptor expression profiles, and activated immune cells, including inflammatory macrophages expressing CCL2, CCL3, CCL20, CXCL1, CXCL3, CXCL10, IL8, IL1B and TNF. The transcriptional differences in critical cases compared to moderate cases likely contribute to clinical observations of heightened inflammatory tissue damage, lung injury and respiratory failure. Our data suggest that pharmacologic inhibition of the CCR1 and/or CCR5 pathways might suppress immune hyperactivation in critical COVID-19.


Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/fisiopatologia , Pneumonia Viral/patologia , Pneumonia Viral/fisiopatologia , Sistema Respiratório/patologia , Análise de Célula Única , Transcriptoma , Adulto , Idoso , Enzima de Conversão de Angiotensina 2 , Líquido da Lavagem Broncoalveolar/virologia , COVID-19 , Comunicação Celular , Diferenciação Celular , Infecções por Coronavirus/virologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Humanos , Sistema Imunitário/patologia , Inflamação/imunologia , Inflamação/patologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Pandemias , Peptidil Dipeptidase A/genética , Pneumonia Viral/virologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA