Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20232, 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37981653

RESUMO

Marine sediments are a useful environmental assessment matrix as they naturally trap toxic substances of anthropogenic origin and thus have higher concentrations of these than the surrounding water. Therefore, developing methods for the sensitive, accurate, and inexpensive quantification of these substances is important, as the traditional techniques have various disadvantages. The current study evaluated the effectiveness of an in situ bismuth-modified carbon-fiber microelectrode (voltamperometric sensor) to simultaneously detect Pb, Cd, and Zn in marine sediments from Puerto Jeli in El Oro Province, Ecuador. This site is representative of the contamination levels present along the coast in this province. Differential pulse anodic stripping voltammetry was applied, and the resulting linear regression for the metal quantification ranged from 12 to 50 µg mL-1, with quantification limits for Pb(II), Cd(II), and Zn(II) of 18.69, 12.55, and 19.29 µg mL-1, respectively. Thus, the quantification with the sensor was successful. According to the preliminary results, Cd and Pb values exceeded the permissible limits established by Ecuador (Texto Unificado de la Legislación Secundaria del Ministerio del Ambiente) and the US Environmental Protection Agency, respectively.

2.
Curr Res Food Sci ; 7: 100543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455680

RESUMO

Biofilms are associated with infections that are resistant to conventional therapies, contributing to the antimicrobial resistance crisis. The need for alternative approaches against biofilms is well-known. Although natural products like stingless bee honeys (tribe: Meliponini) constitute an alternative treatment, much is still unknown. Our main goal was to evaluate the antibiofilm activity of stingless bee honey samples against multidrug-resistant (MDR) pathogens through biomass assays, fluorescence (cell count and viability), and scanning electron (structural composition) microscopy. We analyzed thirty-five honey samples at 15% (v/v) produced by ten different stingless bee species (Cephalotrigona sp., Melipona sp., M. cramptoni, M. fuscopilosa, M. grandis, M. indecisa, M. mimetica, M. nigrifacies, Scaptotrigona problanca, and Tetragonisca angustula) from five provinces of Ecuador (Tungurahua, Pastaza, El Oro, Los Ríos, and Loja) against 24-h biofilms of Staphylococcus aureus, Klebsiella pneumoniae, Candida albicans, and Candida tropicalis. The present honey set belonged to our previous study, where the samples were collected in 2018-2019 and their physicochemical parameters, chemical composition, mineral elements, and minimal inhibitory concentration (MIC) were screened. However, the polyphenolic profile and their antibiofilm activity on susceptible and multidrug-resistant pathogens were still unknown. According to polyphenolic profile of the honey samples, significant differences were observed according to their geographical origin in terms of the qualitative profiles. The five best honey samples (OR24.1, LR34, LO40, LO48, and LO53) belonging to S. problanca, Melipona sp., and M. indecisa were selected for further analysis due to their high biomass reduction values, identification of the stingless bee specimens, and previously reported physicochemical parameters. This subset of honey samples showed a range of 63-80% biofilm inhibition through biomass assays. Fluorescence microscopy (FM) analysis evidenced statistical log reduction in the cell count of honey-treated samples in all pathogens (P <0.05), except for S. aureus ATCC 25923. Concerning cell viability, C. tropicalis, K. pneumoniae ATCC 33495, and K. pneumoniae KPC significantly decreased (P <0.01) by 21.67, 25.69, and 45.62%, respectively. Finally, scanning electron microscopy (SEM) analysis demonstrated structural biofilm disruption through cell morphological parameters (such as area, size, and form). In relation to their polyphenolic profile, medioresinol was only found in the honey of Loja, while scopoletin, kaempferol, and quercetin were only identified in honey of Los Rios, and dihydrocaffeic and dihydroxyphenylacetic acids were only detected in honey of El Oro. All the five honey samples showed dihydrocoumaroylhexose, luteolin, and kaempferol rutinoside. To the authors' best knowledge, this is the first study to analyze stingless bees honey-treated biofilms of susceptible and/or MDR strains of S. aureus, K. pneumoniae, and Candida species.

3.
Waste Manag ; 167: 46-54, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245395

RESUMO

Herein, biochar from biomass residues is demonstrated as active materials for the catalytic cracking of waste motor oil into diesel-like fuels. Above all, alkali-treated rice husk biochar showed great activity with a 250% increase in the kinetic constant compared to the thermal cracking. It also showed better activity than synthetic materials, as previously reported. Moreover, much lower activation energy (185.77to293.48kJmol) for the cracking process was also obtained. According to materials characterization, the catalytic activity was more related to the nature of the biochar's surface than its specific surface area. Finally, liquid products complied with all the physical properties defined by international standards for diesel-like fuels, with the presence of hydrocarbons chains between C10-C27 similar to the ones obtained in commercial diesel.


Assuntos
Hidrocarbonetos , Petróleo , Biomassa , Carvão Vegetal
4.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902198

RESUMO

Magnetic nanoparticles based on iron oxides (MNPs-Fe) have been proposed as photothermal agents (PTAs) within antibacterial photothermal therapy (PTT), aiming to counteract the vast health problem of multidrug-resistant bacterial infections. We present a quick and easy green synthesis (GS) to prepare MNPs-Fe harnessing waste. Orange peel extract (organic compounds) was used as a reducing, capping, and stabilizing agent in the GS, which employed microwave (MW) irradiation to reduce the synthesis time. The produced weight, physical-chemical features and magnetic features of the MNPs-Fe were studied. Moreover, their cytotoxicity was assessed in animal cell line ATCC RAW 264.7, as well as their antibacterial activity against Staphylococcus aureus and Escherichia coli. We found that the 50GS-MNPs-Fe sample (prepared by GS, with 50% v/v of NH4OH and 50% v/v of orange peel extract) had an excellent mass yield. Its particle size was ~50 nm with the presence of an organic coating (terpenes or aldehydes). We believe that this coating improved the cell viability in extended periods (8 days) of cell culture with concentrations lower than 250 µg·mL-1, with respect to the MNPs-Fe obtained by CO and single MW, but it did not influence the antibacterial effect. The bacteria inhibition was attributed to the plasmonic of 50GS-MNPs-Fe (photothermal effect) by irradiation with red light (630 nm, 65.5 mW·cm-2, 30 min). We highlight the superparamagnetism of the 50GS-MNPs-Fe over 60 K in a broader temperature range than the MNPs-Fe obtained by CO (160.09 K) and MW (211.1 K). Therefore, 50GS-MNPs-Fe could be excellent candidates as broad-spectrum PTAs in antibacterial PTT. Furthermore, they might be employed in magnetic hyperthermia, magnetic resonance imaging, oncological treatments, and so on.


Assuntos
Citrus sinensis , Hipertermia Induzida , Nanopartículas de Magnetita , Animais , Antibacterianos/farmacologia , Nanopartículas de Magnetita/química , Escherichia coli , Ferro/farmacologia , Óxidos/farmacologia
5.
Nanotechnology ; 34(17)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36689773

RESUMO

The search for new strategies to curb the spread of the SARS-CoV-2 coronavirus, which causes COVID-19, has become a global priority. Various nanomaterials have been proposed as ideal candidates to inactivate the virus; however, because of the high level of biosecurity required for their use, alternative models should be determined. This study aimed to compare the effects of two types of nanomaterials gold (AuNPs) and silver nanoparticles (AgNPs), recognized for their antiviral activity and affinity with the coronavirus spike protein using PhiX174 and enveloped Phi6 bacteriophages as models. To reduce the toxicity of nanoparticles, a species known for its intermediate antiviral activity,Solanum mammosumL. (Sm), was used. NPs prepared with sodium borohydride (NaBH4) functioned as the control. Antiviral activity against PhiX174 and Phi6 was analyzed using its seed, fruit, leaves, and essential oil; the leaves were the most effective on Phi6. Using the aqueous extract of the leaves, AuNPs-Sm of 5.34 ± 2.25 nm and AgNPs-Sm of 15.92 ± 8.03 nm, measured by transmission electron microscopy, were obtained. When comparing NPs with precursors, both gold(III) acetate and silver nitrate were more toxic than their respective NPs (99.99% at 1 mg ml-1). The AuNPs-Sm were less toxic, reaching 99.30% viral inactivation at 1 mg ml-1, unlike the AgNPs-Sm, which reached 99.94% at 0.01 mg ml-1. In addition, cell toxicity was tested in human adenocarcinoma alveolar basal epithelial cells (A549) and human foreskin fibroblasts. Gallic acid was the main component identified in the leaf extract using high performance liquid chromatography with diode array detection (HPLC-DAD). The FT-IR spectra showed the presence of a large proportion of polyphenolic compounds, and the antioxidant analysis confirmed the antiradical activity. The control NPs showed less antiviral activity than the AuNPs-Sm and AgNPs-Sm, which was statistically significant; this demonstrates that both theS. mammosumextract and its corresponding NPs have a greater antiviral effect on the surrogate Phi bacteriophage, which is an appropriate model for studying SARS-CoV-2.


Assuntos
COVID-19 , Nanopartículas Metálicas , Solanum , Humanos , Nanopartículas Metálicas/química , Ouro/farmacologia , Ouro/química , SARS-CoV-2 , Espectroscopia de Infravermelho com Transformada de Fourier , Prata/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
6.
Front Microbiol ; 13: 951402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171747

RESUMO

Adaptation and microbial attachment mechanisms for the degradation of sulfide ores are mediated by the production of extracellular polymeric substances (EPS) and their role in biofilm formation. EPS production responds to induction mechanisms associated with environmental conditions. In this study, the double induction of EPS with galactose and high ferric iron concentrations in planktonic cells of Acidithiobacillus ferrooxidans, and their attachment on the surface of a polymetallic sulfide ore from Bella Rica-Azuay in Ecuador were evaluated. A. ferrooxidans cells were previously adapted to different concentrations of galactose [0, 0.15, and 0.25% (w/v)], using two ferrous iron concentrations as an energy source (9 and 18 g L-1) in a 9K culture medium. EPS production and its effect on mineral attachment were determined at the time point of maximal growth. The results obtained show a maximum cell attachment of 94.1% within 2 h at 0.15% of galactose and 18 g⋅L-1 of ferric iron concentration, compared to 71.4% without galactose and 9 g⋅L-1 of ferric iron. The maximum concentration of EPS was obtained with a 0.25% galactose concentration; however, it did not result in greater attachment compared to 0.15% galactose concentration. Through the combined induction of low galactose concentration and high ferric iron concentration, the percentage of bacterial attachment can be increased and, therefore, a possible increase in the rate of biooxidation and bioleaching could be obtained.

7.
Int J Nanomedicine ; 16: 5879-5894, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471354

RESUMO

PURPOSE: The importance of studying polyphenolic compounds as natural antioxidants has encouraged the search for new methods of analysis that are quick and simple. The synthesis of silver nanoparticles (AgNPs) using plant extracts has been presented as an alternative to determine the total polyphenolic content and its antioxidant activity. METHODS: In this study, aqueous leaf extract of Solanum mammosum, a species of plant endemic to South America, was used to produce AgNPs. The technique of oxygen radical absorption capacity using fluorescein (ORAC-FL) was used to measure antioxidant activity. The oxidation of the 2´,7´-dichlorodihydrofluorescein diacetate (DCFH2-DA) as fluorescent probe was used to measure cellular antioxidant activity (CAA). Electrochemical behavior was also examined using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Total polyphenolic content (TPH) was analyzed using the Folin-Ciocalteu method, and the major polyphenolic compound was analyzed by high performance liquid chromatography with diode array detector (HPLC/DAD). Finally, a microbial analysis was conducted using Escherichia coli and Bacillus sp. RESULTS: The average size of nanoparticles was 5.2 ± 2.3 nm measured by high-resolution transmission electron microscopy (HR-TEM). The antioxidant activity measured by ORAC-FL in the extract and nanoparticles were 3944 ± 112 and 637.5 ± 14.8 µM ET/g of sample, respectively. Cellular antioxidant activity was 14.7 ± 0.2 for the aqueous extract and 12.5 ± 0.2 for the nanoparticles. The electrochemical index (EI) was 402 µA/V for the extract and 324 µA/V for the nanoparticles. Total polyphenolic content was 826.6 ± 20.9 and 139.7 ± 20.9 mg EGA/100 g of sample. Gallic acid was the main polyphenolic compound present in the leaf extract. Microbiological analysis revealed that although leaf extract was not toxic for Escherichia coli and Bacillus sp., minor toxic activity for AgNPs was detected for both strains. CONCLUSION: It is concluded that the aqueous extract of the leaves of S. mammosum contains nontoxic antioxidant compounds capable of producing AgNPs. The methods using AgNPs can be used as a fast analytical tool to monitor the presence of water-soluble polyphenolic compounds from plant origin. Analysis and detection of new antioxidants from plant extracts may be potentially applicable in biomedicine.


Assuntos
Nanopartículas Metálicas , Solanum , Antioxidantes , Fluoresceína , Capacidade de Absorbância de Radicais de Oxigênio , Extratos Vegetais , Espécies Reativas de Oxigênio , Prata , Água
8.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068597

RESUMO

Research on nanomaterial exposure-related health risks is still quite limited; this includes standardizing methods for measuring metals in living organisms. Thus, this study validated an atomic absorption spectrophotometry method to determine fertility and bioaccumulated iron content in Drosophila melanogaster flies after feeding them magnetite nanoparticles (Fe3O4NPs) dosed in a culture medium (100, 250, 500, and 1000 mg kg-1). Some NPs were also coated with chitosan to compare iron assimilation. Considering both accuracy and precision, results showed the method was optimal for concentrations greater than 20 mg L-1. Recovery values were considered optimum within the 95-105% range. Regarding fertility, offspring for each coated and non-coated NPs concentration decreased in relation to the control group. Flies exposed to 100 mg L-1 of coated NPs presented the lowest fertility level and highest bioaccumulation factor. Despite an association between iron bioaccumulation and NPs concentration, the 500 mg L-1 dose of coated and non-coated NPs showed similar iron concentrations to those of the control group. Thus, Drosophila flies' fertility decreased after NPs exposure, while iron bioaccumulation was related to NPs concentration and coating. We determined this method can overcome sample limitations and biological matrix-associated heterogeneity, thus allowing for bioaccumulated iron detection regardless of exposure to coated or non-coated magnetite NPs, meaning this protocol could be applicable with any type of iron NPs.


Assuntos
Drosophila melanogaster/fisiologia , Comportamento Alimentar , Ferro/metabolismo , Nanopartículas de Magnetita/química , Animais , Bioacumulação , Quitosana/química , Fertilidade , Limite de Detecção , Nanopartículas de Magnetita/ultraestrutura , Eletricidade Estática , Difração de Raios X
9.
Disaster Med Public Health Prep ; : 1-13, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34006342

RESUMO

The global coronavirus disease 2019 (COVID-19) pandemic has altered entire nations and their health systems. The greatest impact of the pandemic has been seen among vulnerable populations, such as those with comorbidities like heart diseases, kidney failure, obesity, or those with worse health determinants such as unemployment and poverty. In the current study, we are proposing previous exposure to fine-grained volcanic ashes as a risk factor for developing COVID-19. Based on several previous studies it has been known since the mid 1980s of the past century that volcanic ash is most likely an accelerating factor to suffer from different types of cancer, including lung or thyroid cancer. Our study postulates, that people who are most likely to be infected during a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) widespread wave will be those with comorbidities that are related to previous exposure to volcanic ashes. We have explored 8703 satellite images from the past 21 y of available data from the National Oceanic and Atmospheric Administration (NOAA) database and correlated them with the data from the national institute of health statistics in Ecuador. Additionally, we provide more realistic numbers of fatalities due to the virus based on excess mortality data of 2020-2021, when compared with previous years. This study would be a very first of its kind combining social and spatial distribution of COVID-19 infections and volcanic ash distribution. The results and implications of our study will also help countries to identify such aforementioned vulnerable parts of the society, if the given geodynamic and volcanic settings are similar.

10.
Polymers (Basel) ; 12(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353190

RESUMO

Suture biomaterials are critical in wound repair by providing support to the healing of different tissues including vascular surgery, hemostasis, and plastic surgery. Important properties of a suture material include physical properties, handling characteristics, and biological response for successful performance. However, bacteria can bind to sutures and become a source of infection. For this reason, there is a need for new biomaterials for suture with antifouling properties. Here we report two types of cellulose fibers from coconut (Cocos nucifera) and sisal (Agave sisalana), which were purified with a chemical method, characterized, and tested in vitro and in vivo. According to SEM images, the cellulose fiber from coconut has a porous surface, and sisal has a uniform structure without internal spaces. It was found that the cellulose fiber from sisal has mechanical properties closer to silk fiber biomaterial using Ultimate Tensile Strength. When evaluating the cellulose fibers biodegradability, the cellulose from coconut showed a rapid weight loss compared to sisal. The antifouling test was negative, which demonstrated that neither possesses intrinsic microbicidal activity. Yet, a weak biofilm was formed on sisal cellulose fibers suggesting it possesses antifouling properties compared to cellulose from coconut. In vivo experiments using healthy mice demonstrated that the scarring and mechanical connection was like silk for both cellulose fibers. Overall, our results showed the potential use of cellulose fibers from vegetal for surgical sutures due to excellent mechanical properties, rapid degradation, and no bacterial adhesion.

11.
Molecules ; 25(21)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171592

RESUMO

Silver selenide (Ag2Se) is a promising nanomaterial due to its outstanding optoelectronic properties and countless bio-applications. To the best of our knowledge, we report, for the first time, a simple and easy method for the ultrasound-assisted synthesis of Ag2Se nanoparticles (NPs) by mixing aqueous solutions of silver nitrate (AgNO3) and selenous acid (H2SeO3) that act as Ag and Se sources, respectively, in the presence of dissolved fructose and starch that act as reducing and stabilizing agents, respectively. The concentrations of mono- and polysaccharides were screened to determine their effect on the size, shape and colloidal stability of the as-synthesized Ag2Se NPs which, in turn, impact the optical properties of these NPs. The morphology of the as-synthesized Ag2Se NPs was characterized by transmission electron microscopy (TEM) and both α- and ß-phases of Ag2Se were determined by X-ray diffraction (XRD). The optical properties of Ag2Se were studied using UV-Vis spectroscopy and its elemental composition was determined non-destructively using scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS). The biological activity of the Ag2Se NPs was assessed using cytotoxic and bactericidal approaches. Our findings pave the way to the cost-effective, fast and scalable production of valuable Ag2Se NPs that may be utilized in numerous fields.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Nanopartículas Metálicas/química , Compostos de Selênio/química , Compostos de Prata/química , Açúcares/química , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Química Verde , Humanos , Polissacarídeos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Ácido Selenioso/química , Semicondutores , Nitrato de Prata/química , Staphylococcus aureus/efeitos dos fármacos
12.
Food Chem Toxicol ; 143: 111538, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32615239

RESUMO

Cigarette smoking has been associated with an increase in oxidative stress (OS) and is considered a predisposing factor to chronic noncommunicable diseases, whilst dietary antioxidants has been proposed as an alternative to cope with this oxidative stress. In this study, 20 smokers and 20 non-smokers were studied with the aim of determining their antioxidant status, as well as the ability of an infusion of 23 medicinal plants, to counteract the damage caused by OS. The plasma, red blood cells (RBCs) and polymorphonuclear cells (PBMCs) of both groups were incubated or not with the horchata infusion extract and then the OS markers, genotoxicity, nanostructure of RBCs membrane and genes related to oxidative responses and cellular functionality were evaluated. Up to 33 different compounds, mainly quercetin glycosides, were identified in the extract. A significant deterioration in the antioxidant status in smokers compared to non-smokers was found. The horchata infusion extract improved the nanostructure of RBCs and DNA damage, as well as the activity of the endogenous antioxidant enzymes and markers of oxidative damage to lipid, and proteins in plasma, RBCs and PBMCs in both groups, whilst no significant changes were found in the expression of different genes related to OS response.


Assuntos
Bebidas , Fumar Cigarros/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Plantas Medicinais , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Fumantes , Adulto Jovem
13.
Bioengineering (Basel) ; 7(2)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517252

RESUMO

In this work, Andean sacha inchi (Plukenetia volubilis L.) leaves were used to prepare monodispersed cuprous oxide (Cu2O) nanoparticles under heating. Visual color changes and UV-visible spectroscopy of colloidal nanoparticles showed λmax at 255 nm, revealing the formation of copper oxide nanoparticles. Transmission electron microscopy and dynamic light scattering analysis indicated that the prepared nanoparticles were spherical with an average size of 6-10 nm. The semi-crystalline nature and Cu2O phase of as-prepared nanoparticles were examined by X-ray diffraction. Fourier-transform infrared spectroscopy confirmed the presence of polyphenols, alkaloids and sugar in the sacha inchi leaf, allowing the formation of Cu2O nanoparticles from Cu2+. Additionally, as-synthesized Cu2O nanoparticles exhibited good photocatalytic degradation activity against methylene blue (>78%, 150 min) with rate constant 0.0219106 min-1. The results suggested that the adopted method is low-cost, simple, ecofriendly and highly selective for the synthesis of small Cu2O nanoparticles and may be used as a nanocatalyst in the future in the efficient treatment of organic pollutants in water.

14.
Rev. salud pública ; 22(3): e205, May-June 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1150176

RESUMO

ABSTRACT The global COVID-19 pandemic initiated in Ecuador with the patient zero in February 2020 and since more than 40,000 persons have been tested positive to the virus, leaving some 3,500 deceased, while approximately about 10,500 persons above annual average numbers died within March to May. A strict lockdown was applied by mid-March, which resulted to a severe economic crisis in the country. Although during the lockdown occurred a notable decrease in the number of new cases, the spread of the infection was already massive, untechnical, political and economic decisions will certainly lead to continuous wave of infections for months. Objective Our study postulates, that persons who are most likely to be infected during such secondary wave will be people who have already health issues to which we count besides the known ones, especially those who are already suffer by the distribution of volcanic ashes, as such pyroclastic material is known to affect lunges and thyroids. Methods A descriptive ecological study of information related to COVID-19 infection at a national level using official data from the Minister of Public Health and volcanic ash fall by geographical area in Ecuador. Results The mortality rate per canton indicated that those with lower attack rates are the ones with highest mortality rate. For instance, Portovelo (21.3/100,000), Playas (18.4/100,000), Santa Rosa (15.8/100,000), Suscal (15.3/100,000) and Penipe (14.3/100,000) reported the highest mortality rate per 100,000 people. The main distribution of such volcanic material is within the central to northern area of the Highlands and Inter-Andean Valley of Ecuador, due to the analysis of some 7394 satellite images of the last 21 years. Conclusions We conclude that areas with high vulnerabilities are also most susceptible to develop COVID-19. Such areas with their respective populations will be affected above average and shall be protected in particular within the presently starting during possible second wave of infection.(AU)


RESUMEN La pandemia de COVID-19 inició en Ecuador en febrero de 2020. Desde el inicio más de 40 000 personas han sido oficialmente diagnosticadas con el virus, que ha dejado al menos 3 500 fallecidas, mientras que aproximadamente unas 10 500 personas por encima del promedio anual murieron entre marzo y mayo de 2020. A mediados de marzo se aplicó el confinamiento absoluto en el país, lo que provocó una grave crisis económica y social en Ecuador. Aunque el bloqueo produjo una reducción en el número de casos, la infección estaba propagada ya entre la comunidad y los diagnósticos aumentaron notable debido a decisiones políticas y económicas, que, sin lugar a duda, conducirán a oleadas posteriores de infección por incluso meses. Objetivo Nuestro estudio postula que las personas que tienen más probabilidades de infectarse durante dicha ola secundaria serán las personas que ya tengan problemas de salud. A la vez, proponemos que aquellos pobladores que ya están sufriendo por la caída de cenizas volcánicas y flujos piroclásticos pueden tener más riesgo tal como lo describimos en casos relacionados con cáncer de tiroides y ceniza. Métodos Es un estudio ecológico descriptivo de la información relacionada con la infección por COVID-19 a nivel nacional, utilizando datos oficiales de contagio del Ministerio de Salud Pública y caída de cenizas volcánicas por área geográfica en Ecuador. Resultados La tasa de mortalidad por cantón indicó que aquellos con tasas de ataque más bajas son los que tienen la tasa de mortalidad más alta. Por ejemplo, Portovelo (21,3 / 100.000), Playas (18,4 / 100.000), Santa Rosa (15,8 / 100 000), Suscal (15,3 / 100 000) y Penipe (14,3 / 100 000) registraron la tasa de mortalidad más alta por cada 100 000 personas. La principal distribución de dicho material volcánico se encuentra dentro de la zona centro-norte de la Sierra y Valle Interandino del Ecuador, debido al análisis de unas 7 394 imágenes satelitales de los últimos 21 años. Conclusiones Concluimos que las áreas con alta vulnerabilidad también son más susceptibles a desarrollar COVID-19. Tales áreas con sus respectivas poblaciones se verán afectadas por encima de la media y estarán protegidas, en particular, dentro del inicio actual durante una posible segunda ola de infección.(AU)


Assuntos
Humanos , Pneumonia Viral/epidemiologia , Infecções por Coronavirus/epidemiologia , Erupções Vulcânicas/efeitos adversos , Populações Vulneráveis , Epidemiologia Descritiva , Equador/epidemiologia , Estudos Ecológicos
15.
Materials (Basel) ; 13(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973124

RESUMO

The search for sensitive and rapid analytical techniques for the determination of natural antioxidants is an area in constant growth due, among other aspects, to the complexity of plant matrices. In this study, silver nanoparticles prepared with the aqueous extract of Mimosa albida leaves were used to assess their polyphenolic content and antioxidant capacity. Silver nanoparticles were characterized by different techniques. As a result, nanoparticles of 6.5 ± 3.1 nm were obtained. The total phenolic content in the extract was 1320.4 ± 17.6 mg of gallic acid equivalents GAE. 100 g-1 and in the nanoparticles 257.3 ± 5.1 mg GAE. 100 g-1. From the phenolic profile analyzed by ultra high-performance liquid chromatography (UPLC) with a diode-array detector (DAD), the presence of apigenin and luteolin in the plant extract is postulated. The antioxidant capacity measured by oxygen radical absorbance capacity ORAC-fluorescein assay was 86917 ± 6287 and 7563 ± 967 µmol ET g-1 in the extract and nanoparticles respectively. Electrochemical analysis by cyclic voltammetry (CV) confirmed the effective reduction capacity of the Mimosa albida leaves extract to reduce Ag ions to AgNPs and differential pulse voltammetry (DPV) suggested the presence of two main reducing agents in the extract. From this study, it was concluded that the aqueous extract of Mimosa albida contains reducing agents capable of synthesizing silver nanoparticles, which can be used in the phytochemical industry.

17.
Rev. colomb. ciencias quim. farm ; 45(3): 422-437, Sep.-Dec. 2016. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-959988

RESUMO

El objetivo de esta investigación fue microencapsular aceite de sacha inchi mediante secado por aspersión, con el fin de evitar las reacciones oxidativas de degradación, dado su alto contenido de ácidos grasos monoinsaturados y poliinsaturados, los cuales presentan grandes beneficios para la salud. Empleando maltodextrina y goma arábiga en una proporción ( 1:1 ), se evaluó la temperatura de entrada y la carga de aceite, siendo 150 °C y 33% las mejores condiciones de trabajo durante el proceso de secado. Se obtuvo un rendimiento y eficiencia de microencapsulación de 82,10 ± 0,99% y 93,90 ± 0,56%, respectivamente. Cabe mencionar que esta investigación es la primera en emplear la técnica de secado por aspersión, y como agentes formadores de la pared polimérica la mezcla de maltodextrina y goma arábiga en la microencapsulación de aceite de sacha inchi. Mediante análisis fisicoquímico, se evaluó la humedad del aceite de sacha inchi microencapsulado, manteniendo un contenido de humedad a las 26 semanas de 4,60 ± 0,02%. Al utilizar cromatografía de gases se encontró que no existe variación en cuanto al perfil de ácidos grasos antes y después de la microencapsulación, y mediante espectroscopía infrarroja se demostró que el aceite de sacha inchi se encuentra en el interior de las microcápsulas. La microscopía electrónica de barrido permitió observar que las microcápsulas presentan forma esférica con una superficie lisa y libre de poros, lo que evita la exposición directa del aceite a las diferentes condiciones ambientales.


The objective of this research was microencapsulated sacha inchi oil by spray drying, in order to prevent oxidative degradation reactions, given its high content of mono-unsaturated and polyunsaturated fatty acids, which present great health benefits. Employing a maltodextrin-gum arabic system in the same ratio (1:1), the inlet temperature and the oil charge was evaluated, being 150 °C and 33% the best conditions during the drying process, obtaining a performance and efficiency microencapsulation of 82.10 ± 0.99% and 93.90 ± 0.56%, respectively. It should be mentioned that this research is the first one to use the spray drying technique and maltodextrin and arabic gum as polymeric wall formers agents for the sacha inchi oil microen-capsulation. By physicochemical analysis, the microencapsulated sacha inchi oil moisture was evaluated, keeping a moisture content at 26 weeks of 4.60 ± 0.02%, applying gas chromatography, it was found that there is no variation in the fatty acid profile before and after microencapsulation. Through infrared spectroscopy it was shown that sacha inchi oil is inserted into the core of the microcapsules. The electron microscopy scanning allowed to observe that the microcapsules have a spherical shape with a smooth surface and free of pores which prevent direct contact of the oil with different ambient conditions.

18.
Biomater Sci ; 4(12): 1713-1725, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27748772

RESUMO

Nanotechnology is gaining impetus in the present century and particularly the use of nanoparticles (NPs), whose properties are significantly different from the larger matter. These have found wider and potential applications in the fields of medicine, energy, cosmetics, environment and biomedicine. Among the NPs, silver nanoparticles (AgNPs) are of particular interest for scientists and technologists due to their unique physico-chemical and biological properties. Besides, AgNPs by themselves also possess broad-spectrum microbial activity, which has further expanded their application in both academia and industries. On the other hand, research and drug discovery in the field of peptides is surging. Chemistry and biology of peptides have seen a renaissance in this century as many of the peptide-based therapeutics have entered the market and many more are in the different phases of clinical trials. To fuel this, peptides have also found numerous applications in nanotechnology. Taking advantage of these two scenarios, namely, AgNPs and peptides, conjugation of these entities have emerged as a powerful technique and have opened the doors for a new revolution. Keeping this motivation in mind, we here present a mini-review on the combined concept of AgNPs and peptides.


Assuntos
Nanopartículas Metálicas/química , Peptídeos/química , Prata/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Tamanho da Partícula , Peptídeos/farmacologia , Propriedades de Superfície
19.
J Photochem Photobiol B ; 158: 55-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26945647

RESUMO

In this report, a simple and cost-effective methodology has been developed to obtain gold nanoparticles (AuNPs) using Sacha inchi (Plukenetia volubilis) oil in the presence of sunlight. The spectroscopic and morphological properties of AuNPs were characterized by using UV-vis spectroscopy, transmission electron microscopy (TEM), particle size analyzer, and X-ray diffraction (XRD). UV-vis and TEM reveal that the nanostructure of the gold particles has surfaced plasmon resonance at 515-520nm and is almost spherical in shape with an average size of 5-15nm. XRD studies confirmed the face cubic center (fcc) unit cell structure of AuNPs. The as-synthesized AuNPs showed remarkable photocatalytic decomposition of the methylene blue (>75%) without using any reducing agent and weak antioxidant activity (21-16%) against 1,1-diphenyl-2-picrylhydrazyl at the different sunlight exposure times. The experimental approach is promising and suggested that the sunlight is a good source of energy for enhancement of AuNP synthesis via Sacha inchi oil and its photocatalytic activity.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Óleos , Antioxidantes/farmacologia , Catálise , Cristalografia por Raios X , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA