Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 5: 3615, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24710389

RESUMO

Racemases catalyse the inversion of stereochemistry in biological molecules, giving the organism the ability to use both isomers. Among them, lactate racemase remains unexplored due to its intrinsic instability and lack of molecular characterization. Here we determine the genetic basis of lactate racemization in Lactobacillus plantarum. We show that, unexpectedly, the racemase is a nickel-dependent enzyme with a novel α/ß fold. In addition, we decipher the process leading to an active enzyme, which involves the activation of the apo-enzyme by a single nickel-containing maturation protein that requires preactivation by two other accessory proteins. Genomic investigations reveal the wide distribution of the lactate racemase system among prokaryotes, showing the high significance of both lactate enantiomers in carbon metabolism. The even broader distribution of the nickel-based maturation system suggests a function beyond activation of the lactate racemase and possibly linked with other undiscovered nickel-dependent enzymes.


Assuntos
Ácido Láctico/metabolismo , Lactobacillus plantarum/enzimologia , Níquel , Racemases e Epimerases/metabolismo , Lactobacillus plantarum/genética , Dobramento de Proteína , Racemases e Epimerases/genética , Estereoisomerismo
2.
J Biol Chem ; 286(19): 16734-42, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454485

RESUMO

The bacterial Rcs phosphorelay is a stress-induced defense mechanism that controls the expression of numerous genes, including those for capsular polysaccharides, motility, and virulence factors. It is a complex multicomponent system that includes the histidine kinase (RcsC) and the response regulator (RcsB) and also auxiliary proteins such as RcsF. RcsF is an outer membrane lipoprotein that transmits signals from the cell surface to RcsC. The physiological signals that activate RcsF and how RcsF interacts with RcsC remain unknown. Here, we report the three-dimensional structure of RcsF. The fold of the protein is characterized by the presence of a central 4-stranded ß sheet, which is conserved in several other proteins, including the copper-binding domain of the amyloid precursor protein. RcsF, which contains four conserved cysteine residues, presents two nonconsecutive disulfides between Cys(74) and Cys(118) and between Cys(109) and Cys(124), respectively. These two disulfides are not functionally equivalent; the Cys(109)-Cys(124) disulfide is particularly important for the assembly of an active RcsF. Moreover, we show that formation of the nonconsecutive disulfides of RcsF depends on the periplasmic disulfide isomerase DsbC. We trapped RcsF in a mixed disulfide complex with DsbC, and we show that deletion of dsbC prevents the activation of the Rcs phosphorelay by signals that function through RcsF. The three-dimensional structure of RcsF provides the structural basis to understand how this protein triggers the Rcs signaling cascade.


Assuntos
Proteínas de Escherichia coli/química , Isomerases de Dissulfetos de Proteínas/química , Cristalografia por Raios X/métodos , Cisteína/química , Dissulfetos/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ligantes , Espectrometria de Massas/métodos , Mutagênese Sítio-Dirigida , Periplasma/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química
3.
Antioxid Redox Signal ; 15(3): 817-29, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20977338

RESUMO

Peroxiredoxin 5 (PRDX5) was the last member to be identified among the six mammalian peroxiredoxins. It is also the unique atypical 2-Cys peroxiredoxin in mammals. Like the other five members, PRDX5 is widely expressed in tissues but differs by its surprisingly large subcellular distribution. In human cells, it has been shown that PRDX5 can be addressed to mitochondria, peroxisomes, the cytosol, and the nucleus. PRDX5 is a peroxidase that can use cytosolic or mitochondrial thioredoxins to reduce alkyl hydroperoxides or peroxynitrite with high rate constants in the 10(6) to 10(7) M(-1)s(-1) range, whereas its reaction with hydrogen peroxide is more modest, in the 10(5) M(-1)s(-1) range. PRDX5 crystal structures confirmed the proposed enzymatic mechanisms based on biochemical data but revealed also some specific unexpected structural features. So far, PRDX5 has been viewed mainly as a cytoprotective antioxidant enzyme acting against endogenous or exogenous peroxide attacks rather than as a redox sensor. Accordingly, overexpression of the enzyme in different subcellular compartments protects cells against death caused by nitro-oxidative stresses, whereas gene silencing makes them more vulnerable. Thus, more than 10 years after its molecular cloning, mammalian PRDX5 appears to be a unique peroxiredoxin exhibiting specific functional and structural features.


Assuntos
Cisteína/química , Peroxirredoxinas/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Cinética , Dados de Sequência Molecular , Peroxirredoxinas/química , Peroxirredoxinas/genética , Conformação Proteica , Relação Estrutura-Atividade
4.
Arch Biochem Biophys ; 477(1): 98-104, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18489898

RESUMO

Peroxiredoxin 5 (PRDX5) belongs to the PRDX superfamily of thiol-dependent peroxidases able to reduce hydrogen peroxide, alkyl hydroperoxides and peroxynitrite. PRDX5 is classified in the atypical 2-Cys subfamily of PRDXs. In this subfamily, the oxidized form of the enzyme is characterized by the presence of an intramolecular disulfide bridge between the peroxidatic and the resolving cysteine residues. We report here three crystal forms in which this intramolecular disulfide bond is indeed observed. The structures are characterized by the expected local unfolding of the peroxidatic loop, but also by the unfolding of the resolving loop. A new type of interface between PRDX molecules is described. The three crystal forms were not oxidized in the same way and the influence of the oxidizing conditions is discussed.


Assuntos
Dissulfetos/química , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Biopolímeros/química , Biopolímeros/metabolismo , Western Blotting , Cristalografia por Raios X , Humanos , Modelos Moleculares , Oxirredução , Conformação Proteica
5.
Protein Sci ; 17(4): 700-10, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18359859

RESUMO

The peroxiredoxins (PRDXs) define a superfamily of thiol-dependent peroxidases able to reduce hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. Besides their cytoprotective antioxidant function, PRDXs have been implicated in redox signaling and chaperone activity, the latter depending on the formation of decameric high-molecular-weight structures. PRDXs have been mechanistically divided into three major subfamilies, namely typical 2-Cys, atypical 2-Cys, and 1-Cys PRDXs, based on the number and position of cysteines involved in the catalysis. We report the structure of the C45S mutant of annelid worm Arenicola marina PRDX6 in three different crystal forms determined at 1.6, 2.0, and 2.4 A resolution. Although A. marina PRDX6 was cloned during the search of annelid homologs of mammalian 1-Cys PRDX6s, the crystal structures support its assignment to the mechanistically typical 2-Cys PRDX subfamily. The protein is composed of two distinct domains: a C-terminal domain and an N-terminal domain exhibiting a thioredoxin fold. The subunits are associated in dimers compatible with the formation of intersubunit disulfide bonds between the peroxidatic and the resolving cysteine residues in the wild-type enzyme. The packing of two crystal forms is very similar, with pairs of dimers associated as tetramers. The toroid-shaped decamers formed by dimer association and observed in most typical 2-Cys PRDXs is not present. Thus, A. marina PRDX6 presents structural features of typical 2-Cys PRDXs without any formation of toroid-shaped decamers, suggesting that it should function more like a cytoprotective antioxidant enzyme or a modulator of peroxide-dependent cell signaling rather than a molecular chaperone.


Assuntos
Peroxirredoxina VI/química , Peroxirredoxina VI/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Dimerização , Dissulfetos/química , Modelos Moleculares , Dados de Sequência Molecular , Poliquetos , Estrutura Quaternária de Proteína , Alinhamento de Sequência
6.
J Mol Biol ; 337(5): 1079-90, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-15046979

RESUMO

Peroxiredoxin 5 is the last discovered mammalian member of an ubiquitous family of peroxidases widely distributed among prokaryotes and eukaryotes. Mammalian peroxiredoxin 5 has been recently classified as an atypical 2-Cys peroxiredoxin due to the presence of a conserved peroxidatic N-terminal cysteine (Cys47) and an unconserved resolving C-terminal cysteine residue (Cys151) forming an intramolecular disulfide intermediate in the oxidized enzyme. We have recently reported the crystal structure of human peroxiredoxin 5 in its reduced form. Here, a new crystal form of human peroxiredoxin 5 is described at 2.0 A resolution. The asymmetric unit contains three polypeptide chains. Surprisingly, beside two reduced chains, the third one is oxidized although the enzyme was crystallized under initial reducing conditions in the presence of 1 mM 1,4-dithio-dl-threitol. The oxidized polypeptide chain forms an homodimer with a symmetry-related one through intermolecular disulfide bonds between Cys47 and Cys151. The formation of these disulfide bonds is accompanied by the partial unwinding of the N-terminal parts of the alpha2 helix, which, in the reduced form, contains the peroxidatic Cys47 and the alpha6 helix, which is sequentially close to the resolving residue Cys151. In each monomer of the oxidized chain, the C-terminal part including the alpha6 helix is completely reorganized and is isolated from the rest of the protein on an extended arm. In the oxidized dimer, the arm belonging to the first monomer now appears at the surface of the second subunit and vice versa.


Assuntos
Peroxidases/química , Cristalização , Cristalografia por Raios X , Dimerização , Dissulfetos , Ditiotreitol , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Massas , Modelos Moleculares , Oxirredução , Peroxirredoxinas , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA