Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798470

RESUMO

Recent developments in immunotherapy, including immune checkpoint blockade (ICB) and adoptive cell therapy, have encountered challenges such as immune-related adverse events and resistance, especially in solid tumors. To advance the field, a deeper understanding of the molecular mechanisms behind treatment responses and resistance is essential. However, the lack of functionally characterized immune-related gene sets has limited data-driven immunological research. To address this gap, we adopted non-negative matrix factorization on 83 human bulk RNA-seq datasets and constructed 28 immune-specific gene sets. After rigorous immunologist-led manual annotations and orthogonal validations across immunological contexts and functional omics data, we demonstrated that these gene sets can be applied to refine pan-cancer immune subtypes, improve ICB response prediction and functionally annotate spatial transcriptomic data. These functional gene sets, informing diverse immune states, will advance our understanding of immunology and cancer research.

2.
Nat Med ; 30(3): 772-784, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38238616

RESUMO

There is a pressing need for allogeneic chimeric antigen receptor (CAR)-immune cell therapies that are safe, effective and affordable. We conducted a phase 1/2 trial of cord blood-derived natural killer (NK) cells expressing anti-CD19 chimeric antigen receptor and interleukin-15 (CAR19/IL-15) in 37 patients with CD19+ B cell malignancies. The primary objectives were safety and efficacy, defined as day 30 overall response (OR). Secondary objectives included day 100 response, progression-free survival, overall survival and CAR19/IL-15 NK cell persistence. No notable toxicities such as cytokine release syndrome, neurotoxicity or graft-versus-host disease were observed. The day 30 and day 100 OR rates were 48.6% for both. The 1-year overall survival and progression-free survival were 68% and 32%, respectively. Patients who achieved OR had higher levels and longer persistence of CAR-NK cells. Receiving CAR-NK cells from a cord blood unit (CBU) with nucleated red blood cells ≤ 8 × 107 and a collection-to-cryopreservation time ≤ 24 h was the most significant predictor for superior outcome. NK cells from these optimal CBUs were highly functional and enriched in effector-related genes. In contrast, NK cells from suboptimal CBUs had upregulation of inflammation, hypoxia and cellular stress programs. Finally, using multiple mouse models, we confirmed the superior antitumor activity of CAR/IL-15 NK cells from optimal CBUs in vivo. These findings uncover new features of CAR-NK cell biology and underscore the importance of donor selection for allogeneic cell therapies. ClinicalTrials.gov identifier: NCT03056339 .


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Receptores de Antígenos Quiméricos , Animais , Camundongos , Humanos , Receptores de Antígenos Quiméricos/genética , Interleucina-15 , Células Matadoras Naturais , Imunoterapia Adotiva/efeitos adversos , Antígenos CD19 , Proteínas Adaptadoras de Transdução de Sinal
3.
Nat Commun ; 14(1): 4883, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573313

RESUMO

Cells often alter metabolic strategies under nutrient-deprived conditions to support their survival and growth. Characterizing metabolic reprogramming in the tumor microenvironment (TME) is of emerging importance in cancer research and patient care. However, recent technologies only measure a subset of metabolites and cannot provide in situ measurements. Computational methods such as flux balance analysis (FBA) have been developed to estimate metabolic flux from bulk RNA-seq data and can potentially be extended to single-cell RNA-seq (scRNA-seq) data. However, it is unclear how reliable current methods are, particularly in TME characterization. Here, we present a computational framework METAFlux (METAbolic Flux balance analysis) to infer metabolic fluxes from bulk or single-cell transcriptomic data. Large-scale experiments using cell-lines, the cancer genome atlas (TCGA), and scRNA-seq data obtained from diverse cancer and immunotherapeutic contexts, including CAR-NK cell therapy, have validated METAFlux's capability to characterize metabolic heterogeneity and metabolic interaction amongst cell types.


Assuntos
Neoplasias , Análise da Expressão Gênica de Célula Única , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , RNA-Seq , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Microambiente Tumoral/genética
4.
Nucleic Acids Res ; 51(4): 1637-1651, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36727483

RESUMO

It is widely accepted that pooled library CRISPR knockout screens offer greater sensitivity and specificity than prior technologies in detecting genes whose disruption leads to fitness defects, a critical step in identifying candidate cancer targets. However, the assumption that CRISPR screens are saturating has been largely untested. Through integrated analysis of screen data in cancer cell lines generated by the Cancer Dependency Map, we show that a typical CRISPR screen has a ∼20% false negative rate, in addition to library-specific false negatives. Replicability falls sharply as gene expression decreases, while cancer subtype-specific genes within a tissue show distinct profiles compared to false negatives. Cumulative analyses across tissues improves our understanding of core essential genes and suggest only a small number of lineage-specific essential genes, enriched for transcription factors that define pathways of tissue differentiation. To recover false negatives, we introduce a method, Joint Log Odds of Essentiality (JLOE), which builds on our prior work with BAGEL to selectively rescue the false negatives without an increased false discovery rate.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Inativação de Genes , Neoplasias , Humanos , Sistemas CRISPR-Cas , Biblioteca Gênica , Genes Essenciais , Neoplasias/genética , Linhagem Celular Tumoral
5.
Sci Adv ; 8(19): eabm6638, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35559673

RESUMO

Exploiting cancer vulnerabilities is critical for the discovery of anticancer drugs. However, tumor suppressors cannot be directly targeted because of their loss of function. To uncover specific vulnerabilities for cells with deficiency in any given tumor suppressor(s), we performed genome-scale CRISPR loss-of-function screens using a panel of isogenic knockout cells we generated for 12 common tumor suppressors. Here, we provide a comprehensive and comparative dataset for genetic interactions between the whole-genome protein-coding genes and a panel of tumor suppressor genes, which allows us to uncover known and new high-confidence synthetic lethal interactions. Mining this dataset, we uncover essential paralog gene pairs, which could be a common mechanism for interpreting synthetic lethality. Moreover, we propose that some tumor suppressors could be targeted to suppress proliferation of cells with deficiency in other tumor suppressors. This dataset provides valuable information that can be further exploited for targeted cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genes Supressores de Tumor , Humanos , Neoplasias/genética , Mutações Sintéticas Letais
6.
Nat Commun ; 12(1): 6506, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764293

RESUMO

CRISPR knockout fitness screens in cancer cell lines reveal many genes whose loss of function causes cell death or loss of fitness or, more rarely, the opposite phenotype of faster proliferation. Here we demonstrate a systematic approach to identify these proliferation suppressors, which are highly enriched for tumor suppressor genes, and define a network of 145 such genes in 22 modules. One module contains several elements of the glycerolipid biosynthesis pathway and operates exclusively in a subset of acute myeloid leukemia cell lines. The proliferation suppressor activity of genes involved in the synthesis of saturated fatty acids, coupled with a more severe loss of fitness phenotype for genes in the desaturation pathway, suggests that these cells operate at the limit of their carrying capacity for saturated fatty acids, which we confirm biochemically. Overexpression of this module is associated with a survival advantage in juvenile leukemias, suggesting a clinically relevant subtype.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
7.
Genome Biol ; 21(1): 262, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059726

RESUMO

BACKGROUND: Pooled library CRISPR/Cas9 knockout screening across hundreds of cell lines has identified genes whose disruption leads to fitness defects, a critical step in identifying candidate cancer targets. However, the number of essential genes detected from these monogenic knockout screens is low compared to the number of constitutively expressed genes in a cell. RESULTS: Through a systematic analysis of screen data in cancer cell lines generated by the Cancer Dependency Map, we observe that half of all constitutively expressed genes are never detected in any CRISPR screen and that these never-essentials are highly enriched for paralogs. We investigated functional buffering among approximately 400 candidate paralog pairs using CRISPR/enCas12a dual-gene knockout screening in three cell lines. We observe 24 synthetic lethal paralog pairs that have escaped detection by monogenic knockout screens at stringent thresholds. Nineteen of 24 (79%) synthetic lethal interactions are present in at least two out of three cell lines and 14 of 24 (58%) are present in all three cell lines tested, including alternate subunits of stable protein complexes as well as functionally redundant enzymes. CONCLUSIONS: Together, these observations strongly suggest that functionally redundant paralogs represent a targetable set of genetic dependencies that are systematically under-represented among cell-essential genes in monogenic CRISPR-based loss of function screens.


Assuntos
Sistemas CRISPR-Cas , Genes Essenciais , Neoplasias/genética , Células A549 , Proteína 9 Associada à CRISPR , Células HT29 , Humanos
8.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30979825

RESUMO

Genetic interactions mediate the emergence of phenotype from genotype. The systematic survey of genetic interactions in yeast showed that genes operating in the same biological process have highly correlated genetic interaction profiles, and this observation has been exploited to infer gene function in model organisms. Such assays of digenic perturbations in human cells are also highly informative, but are not scalable, even with CRISPR-mediated methods. As an alternative, we developed an indirect method of deriving functional interactions. We show that genes having correlated knockout fitness profiles across diverse, non-isogenic cell lines are analogous to genes having correlated genetic interaction profiles across isogenic query strains and similarly imply shared biological function. We constructed a network of genes with correlated fitness profiles across 276 high-quality CRISPR knockout screens in cancer cell lines into a "coessentiality network," with up to 500-fold enrichment for co-functional gene pairs, enabling strong inference of gene function and highlighting the modular organization of the cell.


Assuntos
Técnicas de Inativação de Genes , Redes Reguladoras de Genes/genética , Neoplasias/genética , Neoplasias/patologia , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Bases de Dados Genéticas , Genes Neoplásicos/genética , Genótipo , Humanos , Fenótipo , Biossíntese de Proteínas , RNA Interferente Pequeno/genética , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
9.
Nucleic Acids Res ; 44(22): e161, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27576531

RESUMO

We introduce RNA2DNAlign, a computational framework for quantitative assessment of allele counts across paired RNA and DNA sequencing datasets. RNA2DNAlign is based on quantitation of the relative abundance of variant and reference read counts, followed by binomial tests for genotype and allelic status at SNV positions between compatible sequences. RNA2DNAlign detects positions with differential allele distribution, suggesting asymmetries due to regulatory/structural events. Based on the type of asymmetry, RNA2DNAlign outlines positions likely to be implicated in RNA editing, allele-specific expression or loss, somatic mutagenesis or loss-of-heterozygosity (the first three also in a tumor-specific setting). We applied RNA2DNAlign on 360 matching normal and tumor exomes and transcriptomes from 90 breast cancer patients from TCGA. Under high-confidence settings, RNA2DNAlign identified 2038 distinct SNV sites associated with one of the aforementioned asymetries, the majority of which have not been linked to functionality before. The performance assessment shows very high specificity and sensitivity, due to the corroboration of signals across multiple matching datasets. RNA2DNAlign is freely available from http://github.com/HorvathLab/NGS as a self-contained binary package for 64-bit Linux systems.


Assuntos
Análise de Sequência de DNA , Análise de Sequência de RNA , Software , Algoritmos , Alelos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Exoma , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Perda de Heterozigosidade , Polimorfismo de Nucleotídeo Único , Edição de RNA , Sensibilidade e Especificidade , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA