Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Mol Cell Med ; 11(1): 1-15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36397810

RESUMO

Leukemia is one of the high-incidence cancers that is characterized by an abnormal production of immature white blood cells. Subject to many reports on the side effects of conventional chemotherapy, herbs and natural compounds have been studied as an alternative medicine. In this study, sesamin, a lignan in sesame seed with pharmaceutical functions including anti-cancer, was chosen and treated with MOLT-4 and NB4 leukemic cell lines in various concentrations for 24 and 48 hours. The effect of sesamin on cell inhibition and expression levels of apoptotic genes in leukemic cell lines were investigated by MTT assay and real-time PCR, respectively. Moreover, apoptotic proteins were studied by mass spectrometry and bioinformatics tools to investigate the relation between sesamin and targeted proteins. Results showed that sesamin increased cell inhibition in both cell lines in dose- and time-dependent manner. Levels of caspase-3, -7, -8, and -9 gene expressions significantly increased, while BCL-2 decreased drastically in sesamin-treated cells. From bioinformatics study, PARP4, IPPK and caspase family proteins were found to be involved in sesamin that induced apoptosis in leukemic cells. Besides, doxorubicin, a chemotherapeutic drug, also shared the same protein targets as sesamin in apoptosis pathway. Sesamin demonstrates its potential to enhance cell inhibition and promotes cell apoptosis in both MOLT-4 and NB4 leukemic cell lines. This study will benefit the development of sesamin as an effective anti-leukemia drug in the future.

2.
PeerJ ; 9: e12303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760363

RESUMO

BACKGROUND: Punicalagin is the major phenolic compound found in pomegranate peels. It has several reported medical benefits, including antioxidant, anti-inflammatory, and anticancer properties. The present study investigated the anti-leukemic effects and the molecular mechanism of punicalagin on NB4 and MOLT-4 leukemic cell lines. METHODS: Leukemic cells were treated with punicalagin and cell viability was determined using MTS assay. Apoptosis and autophagy were analyzed by flow cytometry using Annexin V-FITC/PI and anti-LC3/FITC antibodies staining, respectively. Apoptotic and autophagic mRNA expression were determined using reverse transcription-quantitative PCR. STITCH bioinformatics tools were used to predict the interaction between punicalagin and its proposed target proteins. RESULTS: Results indicated that punicalagin decreased NB4 and MOLT-4 cell viability in a dose-dependent manner. Punicalagin, in combination with daunorubicin, exhibited synergistic cytotoxic effects. Punicalagin induced apoptosis through the upregulation of caspase-3/-8/-9, Bax and the downregulation of Bcl-2 expression. Punicalagin also promoted autophagy via the downregulation of mTOR and the upregulation of ULK1 expression. Cyclooxygenase-2 and toll-like receptor 4 were found to be involved in punicalagin-induced cell death in punicalagin-targeted protein interactions. CONCLUSIONS: These results suggest that punicalagin exerts cytotoxic activities by suppressing proliferation and promoting apoptosis and autophagy by activating the caspase cascade, altering Bax and Bcl-2, and regulating autophagy via mTOR/ULK1 signaling.

3.
EXCLI J ; 20: 709-721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907539

RESUMO

Leukemia is the most common type of hematological malignancies. Several natural products including bioactive peptides have been explored and studied for their anti-leukemic activities. In the present study, anti-leukemic peptide, IGTLILM (IM-7), was isolated and identified from the protein hydrolysate of sesame seeds by reverse phase-solid phase extraction, off-gel fractionation and nano LC-MS/MS. The cytotoxic effects of IM-7 were studied in MOLT-4 and NB4 acute leukemic cell lines using an MTT assay. The induction of apoptosis and autophagy was investigated by flow cytometry using Annexin V-FITC/PI staining and anti-LC3/FITC antibodies, respectively. The mRNA alterations of apoptotic and autophagic-related genes were determined by reverse transcription-quantitative PCR. The present study found that IM-7 inhibited the proliferation of MOLT-4 and NB4 cells in dose-dependent manner, but it showed a minimal effect on healthy mononuclear cells. IM-7 activated apoptosis and autophagy through the upregulation of CASP3, ULK1 and BECN1 and the downregulation of BCL2. In addition, IM-7 enhanced the cytotoxic effect of the anti-leukemic drug, daunorubicin. The findings suggested that IM-7 was potent to suppress the proliferation of MOLT-4 and NB4 leukemic cells and induce apoptosis and autophagy through the regulation of caspase 3-Bcl-2 and ULK1-Beclin1, respectively.

4.
Planta Med ; 87(7): 560-569, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33757145

RESUMO

Despite the efficacy of chemotherapy, the adverse effects of chemotherapeutic drugs are considered a limitation of leukemia treatment. Therefore, a chemotherapy drug with minimal side effects is currently needed. One interesting molecule for this purpose is a bioactive peptide isolated from plants since it has less toxicity to normal cells. In this study, we extracted protein from the Zingiber officinale rhizome and performed purification to acquire the peptide fraction with the highest cytotoxicity using ultrafiltration, reverse-phase chromatography, and off-gel fractionation to get the peptide fraction that contained the highest cytotoxicity. Finally, a novel antileukemic peptide, P2 (sequence: RALGWSCL), was identified from the highest cytotoxicity fraction. The P2 peptide reduced the cell viability of NB4, MOLT4, and Raji cell lines without an effect on the normal peripheral blood mononuclear cells. The combination of P2 and daunorubicin significantly decreased leukemic cell viability when compared to treatment with either P2 or daunorubicin alone. In addition, leukemic cells treated with P2 demonstrated increased apoptosis and upregulation of caspase 3, 8, and 9 gene expression. Moreover, we also examined the effects of P2 on p53, which is the key regulator of apoptosis. Our results showed that treatment of leukemic cells with P2 led to the upregulation of p53 and Bcl-2-associated X protein, and the downregulation of B-cell lymphoma 2, indicating that p53 is involved in apoptosis induction by P2. The results of this study are anticipated to be useful for the development of P2 as an alternative drug for the treatment of leukemia.


Assuntos
Zingiber officinale , Apoptose , Linhagem Celular , Leucócitos Mononucleares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53 , Proteína X Associada a bcl-2
5.
Oncol Lett ; 21(1): 32, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33262824

RESUMO

Sesamin, the major furofuran lignan found in the seeds of Sesamum indicum L., has been investigated for its various medicinal properties. In the present study, the anti-leukemic effects of sesamin and its underlying mechanisms were investigated in MOLT-4 and NB4 acute leukemic cells. Leukemic cells were treated with various concentrations of sesamin. Cell viability was determined using an MTT assay. Flow cytometry using Annexin V-FITC/PI staining and anti-LC3/FITC antibodies was applied to detect the level of apoptosis and autophagy, respectively. Reverse transcription-quantitative PCR was performed to examine the alterations in the mRNA expression of apoptotic and autophagic genes. In addition, bioinformatics tools were used to predict the possible interactions between sesamin and its targets. The results revealed that sesamin inhibited MOLT-4 and NB4 cell proliferation in a dose-dependent manner. In addition, sesamin induced both apoptosis and autophagy. In sesamin-treated cells, the gene expression levels of caspase 3 and unc-51 like autophagy activating kinase 1 (ULK1) were upregulated, while those of mTOR were downregulated compared with in the control. Notably, the protein-chemical interaction network indicated that caspase 3, mTOR and ULK1 were the essential factors involved in the effects of sesamin treatment, as with anticancer agents, such as rapamycin, AZD8055, Torin1 and 2. Overall, the findings of the present study suggested that sesamin inhibited MOLT-4 and NB4 cell proliferation, and induced apoptosis and autophagy through the regulation of caspase 3 and mTOR/ULK1 signaling, respectively.

6.
EXCLI J ; 19: 582-595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483405

RESUMO

6-gingerol is a traditional medicine that possesses anti-cancer activity against several types of cancer. However, the mechanism of action still remains unclear. Therefore, this study explored the effects of 6-gingerol on anti-leukemic mechanisms in NB4, MOLT4, and Raji leukemic cell. Results indicated that 6-gingerol inhibited cell proliferation and induced cell apoptosis in these 3 cell lines. Moreover, 6-gingerol was shown to increase the mRNA expression of the caspase family thereby suggesting that 6-gingerol induced apoptosis through the caspase-dependent pathway. To explore the signaling pathway regulating 6-gingerol induced apoptosis, we utilized and integrated the network pharmacology approach together with experimental investigations. Targets of 6-gingerol were identified from ChEMBL and STITCH databases, which were used for constructing the protein-protein interaction (PPI) network. Results from the PPI network indicated that p53 was a key regulator. Moreover, it was found that 6-gingerol could increase the levels of p53 mRNA in all leukemic cell lines. Thus, 6-gingerol has shown to have anti-cancer activity. In addition, p53, BAX and BCL2 could be involved in the apoptosis pathway of these leukemic cells. This study is anticipated to be useful for the development of 6-gingerol as an anti-leukemic drug in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA