Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 39(1): 81-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27322642

RESUMO

BACKGROUND/AIMS: ATP release from erythrocyte plays a key role in hypoxia-induced elevation of blood flow in systematic circulation. We have previously shown that hemolysis contributes to erythrocyte ATP release triggered by several stimuli, including hypoxia, but the molecular mechanisms of hypoxia-increased membrane fragility remain unknown. METHODS: In this study, we compared the action of hypoxia on hemolysis, ATP release and the composition of membrane-bound proteins in human erythrocytes. RESULTS: Twenty minutes incubation of human erythrocytes in the oxygen-free environment increased the content of extracellular hemoglobin by ∼1.5 fold. Paired measurements of hemoglobin and ATP content in the same samples, showed a positive correlation between hemolysis and ATP release. Comparative analysis of SDS-PAGE electrophoresis of erythrocyte ghosts obtained under control and deoxygenated conditions revealed a ∼2-fold elevation of the content of membrane-bound protein with Mr of ∼60 kDa. CONCLUSION: Deoxygenation of human erythrocytes affects composition of membrane-bound proteins. Additional experiments should be performed to identify the molecular origin of 60 kDa protein and its role in the attenuation of erythrocyte integrity and ATP release in hypoxic conditions.


Assuntos
Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Proteínas de Membrana/metabolismo , Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Hipóxia Celular , Eletroforese em Gel de Poliacrilamida , Membrana Eritrocítica/metabolismo , Feminino , Hemólise , Humanos , Modelos Lineares , Masculino , Fatores de Tempo , Adulto Jovem
2.
Sci Rep ; 5: 13793, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26346634

RESUMO

Selective study of the electron transport chain components in living mitochondria is essential for fundamental biophysical research and for the development of new medical diagnostic methods. However, many important details of inter- and intramembrane mitochondrial processes have remained in shadow due to the lack of non-invasive techniques. Here we suggest a novel label-free approach based on the surface-enhanced Raman spectroscopy (SERS) to monitor the redox state and conformation of cytochrome c in the electron transport chain in living mitochondria. We demonstrate that SERS spectra of living mitochondria placed on hierarchically structured silver-ring substrates provide exclusive information about cytochrome c behavior under modulation of inner mitochondrial membrane potential, proton gradient and the activity of ATP-synthetase. Mathematical simulation explains the observed enhancement of Raman scattering due to high concentration of electric near-field and large contact area between mitochondria and nanostructured surfaces.


Assuntos
Citocromos c/química , Citocromos c/metabolismo , Mitocôndrias/metabolismo , Análise Espectral Raman , Trifosfato de Adenosina/biossíntese , Animais , Transporte de Elétrons , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/metabolismo , Prótons , Ratos , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA