Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Peptides ; 151: 170747, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065097

RESUMO

Impaired beta cell function and beta cell death are key features of type 2 diabetes (T2D). Cocaine- and amphetamine-regulated transcript (CART) is necessary for normal islet function in mice. CART increases glucose-stimulated insulin secretion in vivo in mice and in vitro in human islets and CART protects beta cells against glucotoxicity-induced cell death in vitro in rats. Furthermore, beta cell CART is upregulated in T2D patients and in diabetic rodent models as a consequence of hyperglycaemia. The aim of this study was to assess the impact of upregulated beta cell CART on islet hormone secretion and glucose homeostasis in a transgenic mouse model. To this end, mice with beta cell-specific overexpression of CART (CARTtg mice) were generated. CARTtg mice challenged by aging, high fat diet feeding or streptozotocin treatment were phenotyped with respect to in vivo and in vitro insulin and glucagon secretion, glucose homeostasis, and beta cell mass. In addition, the impact of adenoviral overexpression of CART on insulin secretion was studied in INS-1 832/13 cells. CARTtg mice had a normal metabolic phenotype under basal conditions. On the other hand, with age CARTtg mice displayed increased insulin secretion and improved glucose elimination, compared with age-matched WT mice. Furthermore, compared with WT controls, CARTtg mice had increased insulin secretion after feeding a high fat diet, as well as lower glucose levels and higher insulin secretion after streptozotocin treatment. Viral overexpression of CART in INS-1 832/13 cells resulted in increased glucose-stimulated insulin secretion. Together, these results imply that beta cell CART acts to increase insulin secretion when beta cell function is challenged. We propose that the increase in beta cell CART is part of a compensatory mechanisms trying to counteract the hyperglycaemia in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Ratos , Estreptozocina
2.
Acta Otolaryngol ; 142(1): 6-12, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34962430

RESUMO

BACKGROUND: The mechanisms of association between diabetes and inner ear dysfunction are unknown, although endolymphatic hydrops may be involved. We have previously shown that insulin signaling components are expressed in human saccule and that insulin signaling takes place in HEI-OC1 auditory cells. AIM: To explore Nedd4-2 as a target for insulin signaling. MATERIALS AND METHODS: Effects of insulin were analyzed using western blot and confocal microscopy in HEI-OC1 auditory cells. RESULTS: Insulin induced phosphorylation of Nedd4-2 and increased the amount of ENaC at the plasma membrane. Also, protein kinase B (PKB) and NDRG1, a substrate for SGK1 (serum and glucocorticoid stimulated kinase), were phosphorylated in response to insulin. The SGK1 inhibitor GSK650394 prevented insulin-induced phosphorylation of NRDG1, but not of PKB and Nedd4-2, whereas the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin and the PKB inhibitor MK2206 inhibited phosphorylation of all components. Ceramides prevented insulin-induced phosphorylation of PKB and NDRG1, but not of Nedd4-2. The ceramide metabolite sphingosine 1-phosphate induced phosphorylation of Nedd4-2. CONCLUSIONS: Insulin induces phosphorylation of Nedd4-2, most likely involving PI3K/PKB signaling. Sphingosine 1-phosphate might protect Nedd4-2 against ceramide-induced insulin resistance. SIGNIFICANCE: Insulin-mediated regulation of Nedd4-2 might impact on inner ear sodium homeostasis with implications for diabetes-induced inner ear damage.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canais Epiteliais de Sódio/metabolismo , Insulina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Linhagem Celular , Ceramidas/farmacologia , Orelha Interna/citologia , Fosforilação
3.
Am J Physiol Endocrinol Metab ; 319(3): E459-E471, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663099

RESUMO

Insulin resistance in obesity and type 2 diabetes has been shown to be associated with decreased de novo fatty acid (FA) synthesis in adipose tissue. It is known that insulin can acutely stimulate FA synthesis in adipocytes; however, the mechanisms underlying this effect are unclear. The rate-limiting step in FA synthesis is catalyzed by acetyl-CoA carboxylase (ACC), known to be regulated through inhibitory phosphorylation at S79 by the AMP-activated protein kinase (AMPK). Previous results from our laboratory showed an inhibition of AMPK activity by insulin, which was accompanied by PKB-dependent phosphorylation of AMPK at S485. However, whether the S485 phosphorylation is required for insulin-induced inhibition of AMPK or other mechanisms underlie the reduced kinase activity is not known. To investigate this, primary rat adipocytes were transduced with a recombinant adenovirus encoding AMPK-WT or a nonphosphorylatable AMPK S485A mutant. AMPK activity measurements by Western blot analysis and in vitro kinase assay revealed that WT and S485A AMPK were inhibited to a similar degree by insulin, indicating that AMPK S485 phosphorylation is not required for insulin-induced AMPK inhibition. Further analysis suggested an involvement of decreased AMP-to-ATP ratios in the insulin-induced inhibition of AMPK activity, whereas a possible contribution of phosphodiesterases was excluded. Furthermore, we show that insulin-induced AMPK S485 phosphorylation also occurs in human adipocytes, suggesting it to be of an importance yet to be revealed. Altogether, this study increases our understanding of how insulin regulates AMPK activity, and with that, FA synthesis, in adipose tissue.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Adipócitos/efeitos dos fármacos , Adipócitos/enzimologia , Insulina/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adipócitos/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Mutação , Diester Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley
4.
J Vasc Res ; 54(4): 235-245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28768281

RESUMO

BACKGROUND: Smooth muscle cells are important for atherosclerotic plaque stability. Their proper ability to communicate with the extracellular matrix is crucial for maintaining the correct tissue integrity. In this study, we have investigated the role of ß-sarcoglycan within the matrix-binding dystrophin-glycoprotein complex in the development of atherosclerosis. RESULTS: Atherosclerotic plaque development was significantly reduced in ApoE-deficient mice lacking ß-sarcoglycan, and their plaques contained an increase in differentiated smooth muscle cells. ApoE-deficient mice lacking ß-sarcoglycan showed a reduction in ovarian adipose tissue and adipocyte size, while the total weight of the animals was not significantly different. Western blot analysis of adipose tissues showed a decreased activation of protein kinase B, while that of AMP-activated kinase was increased in mice lacking ß-sarcoglycan. Analysis of plasma in ß-sarcoglycan-deficient mice revealed reduced levels of leptin, adiponectin, insulin, cholesterol, and triglycerides but increased levels of IL-6, IL-17, and TNF-α. CONCLUSIONS: Our results indicate that the dystrophin-glycoprotein complex and ß-sarcoglycan can affect the atherosclerotic process. Furthermore, the results show the effects of ß-sarcoglycan deficiency on adipose tissue and lipid metabolism, which may also have contributed to the atherosclerotic plaque reduction.


Assuntos
Doenças da Aorta/prevenção & controle , Apolipoproteínas E/deficiência , Aterosclerose/prevenção & controle , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica , Sarcoglicanas/deficiência , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Complexo de Proteínas Associadas Distrofina/metabolismo , Feminino , Predisposição Genética para Doença , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcoglicanas/genética
5.
Sci Rep ; 7: 40445, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084425

RESUMO

Understanding mechanisms by which a population of beige adipocytes is increased in white adipose tissue (WAT) reflects a potential strategy in the fight against obesity and diabetes. Cyclic adenosine monophosphate (cAMP) is very important in the development of the beige phenotype and activation of its thermogenic program. To study effects of cyclic nucleotides on energy homeostatic mechanisms, mice were generated by targeted inactivation of cyclic nucleotide phosphodiesterase 3b (Pde3b) gene, which encodes PDE3B, an enzyme that catalyzes hydrolysis of cAMP and cGMP and is highly expressed in tissues that regulate energy homeostasis, including adipose tissue, liver, and pancreas. In epididymal white adipose tissue (eWAT) of PDE3B KO mice on a SvJ129 background, cAMP/protein kinase A (PKA) and AMP-activated protein kinase (AMPK) signaling pathways are activated, resulting in "browning" phenotype, with a smaller increases in body weight under high-fat diet, smaller fat deposits, increased ß-oxidation of fatty acids (FAO) and oxygen consumption. Results reported here suggest that PDE3B and/or its downstream signaling partners might be important regulators of energy metabolism in adipose tissue, and potential therapeutic targets for treating obesity, diabetes and their associated metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/deficiência , Transdução de Sinais , Células 3T3-L1 , Adipócitos/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Metabolismo Energético , Ativação Enzimática , Epididimo/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Obesidade/metabolismo , Obesidade/prevenção & controle , Biogênese de Organelas , Fenótipo , Termogênese , Aumento de Peso
6.
Diabetologia ; 60(2): 314-323, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27807598

RESUMO

AIMS/HYPOTHESIS: Salt-inducible kinases (SIKs) are related to the metabolic regulator AMP-activated protein kinase (AMPK). SIK2 is abundant in adipose tissue. The aims of this study were to investigate the expression of SIKs in relation to human obesity and insulin resistance, and to evaluate whether changes in the expression of SIKs might play a causal role in the development of disturbed glucose uptake in human adipocytes. METHODS: SIK mRNA and protein was determined in human adipose tissue or adipocytes, and correlated to clinical variables. SIK2 and SIK3 expression and phosphorylation were analysed in adipocytes treated with TNF-α. Glucose uptake, GLUT protein levels and localisation, phosphorylation of protein kinase B (PKB/Akt) and the SIK substrate histone deacetylase 4 (HDAC4) were analysed after the SIKs had been silenced using small interfering RNA (siRNA) or inhibited using a pan-SIK-inhibitor (HG-9-91-01). RESULTS: We demonstrate that SIK2 and SIK3 mRNA are downregulated in adipose tissue from obese individuals and that the expression is regulated by weight change. SIK2 is also negatively associated with in vivo insulin resistance (HOMA-IR), independently of BMI and age. Moreover, SIK2 protein levels and specific kinase activity display a negative correlation to BMI in human adipocytes. Furthermore, SIK2 and SIK3 are downregulated by TNF-α in adipocytes. Silencing or inhibiting SIK1-3 in adipocytes results in reduced phosphorylation of HDAC4 and PKB/Akt, less GLUT4 at the plasma membrane, and lower basal and insulin-stimulated glucose uptake in adipocytes. CONCLUSION/INTERPRETATION: This is the first study to describe the expression and function of SIKs in human adipocytes. Our data suggest that SIKs might be protective in the development of obesity-induced insulin resistance, with implications for future treatment strategies.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adulto , Idoso , Animais , Western Blotting , Feminino , Humanos , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/farmacologia
7.
Cell Signal ; 28(3): 204-213, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26724218

RESUMO

Parathyroid hormone (PTH) is secreted from the parathyroid glands in response to low plasma calcium levels. Besides its classical actions on bone and kidney, PTH may have other important effects, including metabolic effects, as suggested for instance by increased prevalence of insulin resistance and type 2 diabetes in patients with primary hyperparathyroidism. Moreover, secondary hyperparathyroidism may contribute to the metabolic derangements that characterize states of vitamin D deficiency. PTH has been shown to induce adipose tissue lipolysis, but the details of the lipolytic action of PTH have not been described. Here we used primary mouse adipocytes to show that intact PTH (1-84) as well as the N-terminal fragment (1-37) acutely stimulated lipolysis in a dose-dependent manner, whereas the C-terminal fragment (38-84) was without lipolytic effect. The lipolytic action of PTH was paralleled by phosphorylation of known protein kinase A (PKA) substrates, i.e. hormone-sensitive lipase (HSL) and perilipin. The phosphorylation of HSL in response to PTH occurred at the known PKA sites S563 and S660, but not at the non-PKA site S565. PTH-induced lipolysis, as well as phosphorylation of HSL at S563 and S660, was blocked by both the PKA-inhibitor H89 and the adenylate cyclase inhibitor MDL-12330A, whereas inhibitors of extracellular-regulated kinase (ERK), protein kinase B (PKB), AMP-activated protein kinase (AMPK) and Ca(2+)/calmodulin-dependent protein kinase (CaMK) had little or no effect. Inhibition of phosphodiesterase 4 (PDE4) strongly potentiated the lipolytic action of PTH, whereas inhibition of PDE3 had no effect. Our results show that the lipolytic action of PTH is mediated by the PKA signaling pathway with no or minor contribution of other signaling pathways and, furthermore, that the lipolytic action of PTH is limited by simultaneous activation of PDE4. Knowledge of the signaling pathways involved in the lipolytic action of PTH is important for our understanding of how metabolic derangements develop in states of hyperparathyroidism, including vitamin D deficiency.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Lipólise/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Esterol Esterase/metabolismo , Inibidores de Adenilil Ciclases/farmacologia , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Humanos , Iminas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Perilipina-1 , Inibidores da Fosfodiesterase 4/farmacologia , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/genética , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Adipocyte ; 4(2): 81-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167409

RESUMO

Fermentation of dietary fibers by colonic microbiota generates short-chain fatty acids (SCFAs), e.g., propionic acid and butyric acid, which have been described to have "anti-obesity properties" by ameliorating fasting glycaemia, body weight and insulin tolerance in animal models. In the present study, we therefore investigate if propionic acid and butyric acid have effects on lipolysis, de novo lipogenesis and glucose uptake in primary rat adipocytes. We show that both propionic acid and butyric acid inhibit isoproterenol- and adenosine deaminase-stimulated lipolysis as well as isoproterenol-stimulated lipolysis in the presence of a phosphodiesterase (PDE3) inhibitor. In addition, we show that propionic acid and butyric acid inhibit basal and insulin-stimulated de novo lipogenesis, which is associated with increased phosphorylation and thus inhibition of acetyl CoA carboxylase, a rate-limiting enzyme in fatty acid synthesis. Furthermore, we show that propionic acid and butyric acid increase insulin-stimulated glucose uptake. To conclude, our study shows that SCFAs have effects on fat storage and mobilization as well as glucose uptake in rat primary adipocytes. Thus, the SCFAs might contribute to healthier adipocytes and subsequently also to improved energy metabolism with for example less circulating free fatty acids, which is beneficial in the context of obesity and type 2 diabetes.

9.
J Biol Chem ; 290(11): 6763-76, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25593322

RESUMO

Cyclic nucleotide phosphodiesterase 3A (PDE3) regulates cAMP-mediated signaling in the heart, and PDE3 inhibitors augment contractility in patients with heart failure. Studies in mice showed that PDE3A, not PDE3B, is the subfamily responsible for these inotropic effects and that murine PDE3A1 associates with sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2), phospholamban (PLB), and AKAP18 in a multiprotein signalosome in human sarcoplasmic reticulum (SR). Immunohistochemical staining demonstrated that PDE3A co-localizes in Z-bands of human cardiac myocytes with desmin, SERCA2, PLB, and AKAP18. In human SR fractions, cAMP increased PLB phosphorylation and SERCA2 activity; this was potentiated by PDE3 inhibition but not by PDE4 inhibition. During gel filtration chromatography of solubilized SR membranes, PDE3 activity was recovered in distinct high molecular weight (HMW) and low molecular weight (LMW) peaks. HMW peaks contained PDE3A1 and PDE3A2, whereas LMW peaks contained PDE3A1, PDE3A2, and PDE3A3. Western blotting showed that endogenous HMW PDE3A1 was the principal PKA-phosphorylated isoform. Phosphorylation of endogenous PDE3A by rPKAc increased cAMP-hydrolytic activity, correlated with shift of PDE3A from LMW to HMW peaks, and increased co-immunoprecipitation of SERCA2, cav3, PKA regulatory subunit (PKARII), PP2A, and AKAP18 with PDE3A. In experiments with recombinant proteins, phosphorylation of recombinant human PDE3A isoforms by recombinant PKA catalytic subunit increased co-immunoprecipitation with rSERCA2 and rat rAKAP18 (recombinant AKAP18). Deletion of the recombinant human PDE3A1/PDE3A2 N terminus blocked interactions with recombinant SERCA2. Serine-to-alanine substitutions identified Ser-292/Ser-293, a site unique to human PDE3A1, as the principal site regulating its interaction with SERCA2. These results indicate that phosphorylation of human PDE3A1 at a PKA site in its unique N-terminal extension promotes its incorporation into SERCA2/AKAP18 signalosomes, where it regulates a discrete cAMP pool that controls contractility by modulating phosphorylation-dependent protein-protein interactions, PLB phosphorylation, and SERCA2 activity.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Miocárdio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas de Ancoragem à Quinase A/análise , Proteínas de Ancoragem à Quinase A/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/análise , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/análise , Humanos , Miocárdio/citologia , Miocárdio/enzimologia , Miocárdio/ultraestrutura , Fosforilação , Mapas de Interação de Proteínas , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/análise
10.
J Cell Sci ; 128(3): 472-86, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25472719

RESUMO

Salt-inducible kinase 2 (SIK2) is an AMP-activated protein kinase (AMPK) related kinase abundantly expressed in adipose tissue. Our aim was to identify molecular targets and functions of SIK2 in adipocytes, and to address the role of PKA-mediated phosphorylation of SIK2 on Ser358. Modulation of SIK2 in adipocytes resulted in altered phosphorylation of CREB-regulated transcription co-activator 2 (CRTC2), CRTC3 and class IIa histone deacetylase 4 (HDAC4). Furthermore, CRTC2, CRTC3, HDAC4 and protein phosphatase 2A (PP2A) interacted with SIK2, and the binding of CRTCs and PP2A to wild-type but not Ser358Ala SIK2, was reduced by cAMP elevation. Silencing of SIK2 resulted in reduced GLUT4 (also known as SLC2A4) protein levels, whereas cells treated with CRTC2 or HDAC4 siRNA displayed increased levels of GLUT4. Overexpression or pharmacological inhibition of SIK2 resulted in increased and decreased glucose uptake, respectively. We also describe a SIK2­CRTC2­HDAC4 pathway and its regulation in human adipocytes, strengthening the physiological relevance of our findings. Collectively, we demonstrate that SIK2 acts directly on CRTC2, CRTC3 and HDAC4, and that the cAMP­PKA pathway reduces the interaction of SIK2 with CRTCs and PP2A. Downstream, SIK2 increases GLUT4 levels and glucose uptake in adipocytes.


Assuntos
Glucose/metabolismo , Histona Desacetilases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Células HEK293 , Histona Desacetilases/genética , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , RNA Interferente Pequeno , Ratos , Transdução de Sinais , Fatores de Transcrição/genética
11.
Endocrinology ; 154(9): 3152-67, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23766131

RESUMO

Obesity is linked to various diseases, including insulin resistance, diabetes, and cardiovascular disorders. The idea of inducing white adipose tissue (WAT) to assume characteristics of brown adipose tissue (BAT), and thus gearing it to fat burning instead of storage, is receiving serious consideration as potential treatment for obesity and related disorders. Phosphodiesterase 3B (PDE3B) links insulin- and cAMP-signaling networks in tissues associated with energy metabolism, including WAT. We used C57BL/6 PDE3B knockout (KO) mice to elucidate mechanisms involved in the formation of BAT in epididymal WAT (EWAT) depots. Examination of gene expression profiles in PDE3B KO EWAT revealed increased expression of several genes that block white and promote brown adipogenesis, such as C-terminal binding protein, bone morphogenetic protein 7, and PR domain containing 16, but a clear BAT-like phenotype was not completely induced. However, acute treatment of PDE3B KO mice with the ß3-adrenergic agonist, CL316243, markedly increased the expression of cyclooxygenase-2, which catalyzes prostaglandin synthesis and is thought to be important in the formation of BAT in WAT and the elongation of very long-chain fatty acids 3, which is linked to BAT recruitment upon cold exposure, causing a clear shift toward fat burning and the induction of BAT in KO EWAT. These data provide insight into the mechanisms of BAT formation in mouse EWAT, suggesting that, in a C57BL/6 background, an increase in cAMP, caused by ablation of PDE3B and administration of CL316243, may promote differentiation of prostaglandin-responsive progenitor cells in the EWAT stromal vascular fraction into functional brown adipocytes.


Assuntos
Adipogenia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Células-Tronco Adultas/citologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Animais , Biomarcadores/metabolismo , Cruzamentos Genéticos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dioxóis/farmacologia , Indução Enzimática/efeitos dos fármacos , Epididimo , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Fosfodiesterase/farmacologia , Quinolonas/farmacologia
12.
Cell Tissue Res ; 352(3): 469-78, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584706

RESUMO

Several studies have demonstrated a link between diabetes and the dysfunction of the inner ear. Few studies, however, have reported the signalling mechanisms involved in metabolic control in human inner ear cells. Knowledge of the expression and role of the insulin receptor and downstream signalling components in the inner ear is sparce. Our immunohistochemistry approach has shown that the insulin receptor, insulin receptor substrate 1 (IRS1), protein kinase B (PKB) and insulin-sensitive glucose transporter (GLUT4) are expressed in the sensory epithelium of the human saccule, which also exhibits expression of a calcium-sensitive cAMP/cGMP phosphodiesterase 1C (PDE1C) and the vasopressin type 2 receptor. IRS1 and PDE1C are selectively expressed in sensory epithelial hair cells, whereas the other components are expressed in sensory epithelial supporting cells or in both cell types, as judged from co-expression or non-co-expression with glial fibrillary acidic protein, a marker for supporting cells. Furthermore, IRS1 appears to be localized in association with sensory nerves, whereas GLUT4 is expressed in the peri-nuclear area of stromal cells, as is the case for aquaporin 2. Thus, the insulin receptor, insulin signalling components and selected cAMP signalling components are expressed in the human saccule. In addition to well-known mechanisms of diabetes complications, such as neuropathy and vascular lesions, the expression of these proteins in the saccule could have a role in the observed link between diabetes and balance/hearing disorders.


Assuntos
Epitélio/metabolismo , Insulina/metabolismo , Sáculo e Utrículo/metabolismo , Sensação , Transdução de Sinais , Aquaporina 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/enzimologia , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Receptores de Vasopressinas/metabolismo , Sáculo e Utrículo/citologia , Células Estromais/citologia , Células Estromais/metabolismo
13.
Diabetes ; 62(6): 2088-94, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23349498

RESUMO

Low-grade inflammation in obesity is associated with accumulation of the macrophage-derived cytokine osteopontin (OPN) in adipose tissue and induction of local as well as systemic insulin resistance. Since glucose-dependent insulinotropic polypeptide (GIP) is a strong stimulator of adipogenesis and may play a role in the development of obesity, we explored whether GIP directly would stimulate OPN expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher in adipose tissue of obese individuals (0.13 ± 0.04 vs. 0.04 ± 0.01, P < 0.05) and correlated inversely with measures of insulin sensitivity (r = -0.24, P = 0.001). A common variant of the GIP receptor (GIPR) (rs10423928) gene was associated with a lower amount of the exon 9-containing isoform required for transmembrane activity. Carriers of the A allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone but also as a trigger of inflammation and insulin resistance in adipose tissue. Carriers of the GIPR rs10423928 A allele showed protective properties via reduced GIP effects. Identification of this unprecedented link between GIP and OPN in adipose tissue might open new avenues for therapeutic interventions.


Assuntos
Tecido Adiposo/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Resistência à Insulina/fisiologia , Tecido Adiposo/efeitos dos fármacos , Adolescente , Adulto , Idoso , Alelos , Animais , Células Cultivadas , Feminino , Humanos , Técnicas In Vitro , Resistência à Insulina/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Osteopontina/genética , Ratos , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Adulto Jovem
14.
J Cell Sci ; 125(Pt 21): 5084-95, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22946044

RESUMO

Specificity and versatility in cyclic AMP (cAMP) signalling are governed by the spatial localisation and temporal dynamics of the signal. Phosphodiesterases (PDEs) are important for shaping cAMP signals by hydrolyzing the nucleotide. In pancreatic ß-cells, glucose triggers sub-plasma-membrane cAMP oscillations, which are important for insulin secretion, but the mechanisms underlying the oscillations are poorly understood. Here, we investigated the role of different PDEs in the generation of cAMP oscillations by monitoring the concentration of cAMP in the sub-plasma-membrane space ([cAMP](pm)) with ratiometric evanescent wave microscopy in MIN6 cells or mouse pancreatic ß-cells expressing a fluorescent translocation biosensor. The general PDE inhibitor IBMX increased [cAMP](pm), and whereas oscillations were frequently observed at 50 µM IBMX, 300 µM-1 mM of the inhibitor caused a stable increase in [cAMP](pm). The [cAMP](pm) was nevertheless markedly suppressed by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine, indicating IBMX-insensitive cAMP degradation. Among IBMX-sensitive PDEs, PDE3 was most important for maintaining a low basal level of [cAMP](pm) in unstimulated cells. After glucose induction of [cAMP](pm) oscillations, inhibitors of PDE1, PDE3 and PDE4 inhibitors the average cAMP level, often without disturbing the [cAMP](pm) rhythmicity. Knockdown of the IBMX-insensitive PDE8B by shRNA in MIN6 cells increased the basal level of [cAMP](pm) and prevented the [cAMP](pm)-lowering effect of 2',5'-dideoxyadenosine after exposure to IBMX. Moreover, PDE8B-knockdown cells showed reduced glucose-induced [cAMP](pm) oscillations and loss of the normal pulsatile pattern of insulin secretion. It is concluded that [cAMP](pm) oscillations in ß-cells are caused by periodic variations in cAMP generation, and that several PDEs, including PDE1, PDE3 and the IBMX-insensitive PDE8B, are required for shaping the sub-membrane cAMP signals and pulsatile insulin release.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/fisiologia , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/fisiologia , Insulina/metabolismo , Animais , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/fisiologia , Feminino , Glucose/fisiologia , Secreção de Insulina , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/metabolismo , Isoenzimas/fisiologia , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Periodicidade , Fosfatos de Fosfatidilinositol/metabolismo , Sistemas do Segundo Mensageiro , Análise de Célula Única
15.
Biochem Biophys Res Commun ; 425(4): 812-7, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22892131

RESUMO

The incretin - glucose-dependent insulinotropic polypeptide (GIP) - and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A-285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP-mediated effects on osteopontin a number of strategies were used. Thus, the ß3-adrenergic receptor agonist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulates osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.


Assuntos
Adipócitos/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Polipeptídeo Inibidor Gástrico/fisiologia , Lipogênese/fisiologia , Fatores de Transcrição NFATC/fisiologia , Osteopontina/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Polipeptídeo Inibidor Gástrico/farmacologia , Insulina/metabolismo , Lipogênese/efeitos dos fármacos , Masculino , Camundongos , Fatores de Transcrição NFATC/antagonistas & inibidores , Osteopontina/genética , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley
16.
J Inorg Biochem ; 105(12): 1795-800, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22056176

RESUMO

Reaction of N-(2-hydroxybenzyl)-N-(2-picolyl) glycine (H(2)papy) with VOSO(4) in water gives the oxidovanadium(V) oxido-bridged dimer [{(papy)(VO)}(2) µ-O)] (1). Similarly, reaction of N-(2-hydroxybenzyl) glycine (H(2)glysal) with VOSO(4) gives [(glysal)VO(H(2)O)] (2) and reaction of salicylamide (Hsalam) with VOSO(4) in methanol gives [(salam)(2)VO] (3). The crystal structure of the oxido-bridged complex 1 is reported. The insulin-mimetic activity of all three complexes was evaluated with respect to their ability to phosphorylate protein kinase B (PKB). The speciations of complexes 1 and 2 were studied over the pH range 2-10. Complex 1 shows greater stability over the whole pH range but only 2 and 3 exhibit an insulin-mimetic effect.


Assuntos
Complexos de Coordenação/síntese química , Glicina/análogos & derivados , Hipuratos/química , Hipoglicemiantes/síntese química , Insulina/farmacologia , Fenóis/química , Salicilamidas/química , Vanádio/química , Adipócitos/efeitos dos fármacos , Adipócitos/enzimologia , Adipócitos/metabolismo , Animais , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Estabilidade de Medicamentos , Glicina/química , Concentração de Íons de Hidrogênio , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Modelos Moleculares , Conformação Molecular , Mimetismo Molecular , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
17.
Curr Opin Pharmacol ; 11(6): 676-82, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22001403

RESUMO

The incidence of obesity in the developed world is increasing at an alarming rate. Concurrent with the increase in the incidence of obesity is an increase in the incidence of type 2 diabetes. Cyclic AMP (cAMP) and cGMP are key second messengers in all cells; for example, when it comes to processes of relevance for the regulation of energy metabolism, cAMP is a key mediator in the regulation of lipolysis, glycogenolysis, gluconeogenesis and pancreatic ß cell insulin secretion. PDE3B, one of several enzymes which hydrolyze cAMP and cGMP, is expressed in cells of importance for the regulation of energy homeostasis, including adipocytes, hepatocytes, hypothalamic cells and ß cells. It has been shown, using PDE3 inhibitors and gene targeting approaches in cells and animals, that altered levels of PDE3B result in a number of changes in the regulation of glucose and lipid metabolism and in overall energy homeostasis. This article highlights the complexity involved in the regulation of PDE3B by hormones, and in the regulation of downstream metabolic effects by PDE3B in several interacting tissues.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Ingestão de Energia , Metabolismo Energético , Sistemas do Segundo Mensageiro , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/enzimologia , Adipócitos Brancos/metabolismo , Animais , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/fisiologia , GMP Cíclico/antagonistas & inibidores , GMP Cíclico/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Terapia de Alvo Molecular , Obesidade/tratamento farmacológico , Obesidade/enzimologia , Obesidade/metabolismo , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 3/uso terapêutico , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Sistemas do Segundo Mensageiro/efeitos dos fármacos
18.
Mol Nutr Food Res ; 55 Suppl 2: S290-3, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21887818

RESUMO

The effects of alkylresorcinols (ARs) isolated from rye bran on adipocyte lipolysis, hormone-sensitive lipase activity and phosphorylation and on phosphorylation of protein kinase A substrates were studied. Preincubation with ARs for 18 h suppressed catecholamine-stimulated lipolysis in 3T3-L1 adipocytes. Furthermore, phosphorylation of hormone-sensitive lipase (HSL), a key lipase responsible for stimulated lipolysis, and phosphorylation of protein kinase A substrates, were diminished after preincubation with ARs, whereas HSL protein expression was unaltered. ARs were also shown to inhibit HSL activity in an in vitro assay.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Lipólise/efeitos dos fármacos , Resorcinóis/farmacologia , Secale/química , Esterol Esterase/metabolismo , Células 3T3-L1 , Animais , Catecolaminas/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Isoproterenol/farmacologia , Lipólise/fisiologia , Camundongos , Fosforilação
19.
Front Neurol ; 2: 48, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21886636

RESUMO

OBJECTIVE: To locate components and target proteins of relevance for the cAMP and cGMP signaling networks including cAMP and cGMP phosphodiesterases (PDEs), salt-inducible kinases (SIKs), subunits of Na+, K+-ATPases, and aquaporins (AQPs) in the human saccule. METHODS: The human saccule was dissected out during the removal of vestibular schwannoma via the translabyrinthine approach and immediately fixed. Immunohistochemistry was performed using PDE, SIK, Na(+), K(+)-ATPase, and AQP antibodies. RESULTS: PDEs selective for cAMP (PDE4A, PDE4D, and PDE8A) and cGMP (PDE9A) as well a dual specificity PDE (PDE10A) were detected in the sensory epithelium of the saccule. Furthermore, AQP2, 4, and 9, SIK1 and the α-1 subunit of the Na(+), K(+)-ATPase were detected. CONCLUSION: cAMP and cGMP are important regulators of ion and water homeostasis in the inner ear. The identification of PDEs and SIK1 in the vestibular system offers new treatment targets for endolymphatic hydrops. Exactly how the PDEs are connected to SIK1 and the SIK1 substrate Na(+), K(+)-ATPase and to AQPs 2, 4, 9 remains to be elucidated. The dissection of the signaling networks utilizing these components and evaluating their roles will add new basic knowledge regarding inner ear physiology.

20.
PLoS One ; 5(12): e14191, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21152070

RESUMO

As shown by transgenic mouse models and by using phosphodiesterase 3 (PDE3) inhibitors, PDE3B has an important role in the regulation of insulin secretion in pancreatic ß-cells. However, very little is known about the regulation of the enzyme. Here, we show that PDE3B is activated in response to high glucose, insulin and cAMP elevation in rat pancreatic islets and INS-1 (832/13) cells. Activation by glucose was not affected by the presence of diazoxide. PDE3B activation was coupled to an increase as well as a decrease in total phosphorylation of the enzyme. In addition to PDE3B, several other PDEs were detected in human pancreatic islets: PDE1, PDE3, PDE4C, PDE7A, PDE8A and PDE10A. We conclude that PDE3B is activated in response to agents relevant for ß-cell function and that activation is linked to increased as well as decreased phosphorylation of the enzyme. Moreover, we conclude that several PDEs are present in human pancreatic islets.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/biossíntese , Regulação Enzimológica da Expressão Gênica , Ilhotas Pancreáticas/enzimologia , Animais , Linhagem Celular Tumoral , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Diazóxido/farmacologia , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Insulinoma/metabolismo , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA